Skip to main content
Log in

Recent Trends in Nobel Metals and Carbon Dots in the Costume of Hybrid Nano Architecture

  • Review paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In recent years, hybrid architectures have been extensively developed in the fields of environment and energy to overcome the disadvantages of single-component nanomaterials which are less efficient. One of the common approaches involves integrating noble metals with carbon-based dots (CDs), which can harmonize their respective strengths by combining properties like tunable excitation/emission properties, CDs possess chemical inertness, photostability, low toxicity, good biocompatibility, and environmental friendliness. Consequently, CDs have found extensive use in catalysis, electronics, sensing, and power applications as well as in biology. An emerging nanomaterial, CDs contain a carbonized carbon core attached to heteroatoms in organic functional groups, making it one of the most promising nanomaterials known. Many C-dots are candidates as antibacterial and anticancer reagents due to their surface residue activity and ability to generate reactive oxygen species. Biocompatible and fluorescent C-dots can be used for diagnostics and therapeutics with suitable conjugation, showing their great potential as theragnostic. Specifically, we discuss recent advances in the synthesis, structure, and fluorescence properties of CDs with an emphasis on their biomedical applications. In this review article, there will be a focus on CDs, including drug/gene delivery, bioimaging, photothermal, and photodynamic therapy. In addition, we present a discussion on the future prospects of CDs in the biomedical sector.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mondal P, Ghosal K, Bhattacharyya SK, Das M, Bera A, Ganguly D, Maiti S (2014) Formation of a gold–carbon dot nanocomposite with superior catalytic ability for the reduction of aromatic nitro groups in water. RSC Adv 4(49):25863–25866

    Article  ADS  CAS  Google Scholar 

  2. Qin L, Yi H, Zeng G, Lai C, Huang D, Xu P, Liu X (2019) Hierarchical porous carbon material restricted Au catalyst for highly catalytic reduction of nitroaromatics. J Hazard Mater 380:120864

    Article  CAS  PubMed  Google Scholar 

  3. Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37(9):2096–2126

    Article  CAS  PubMed  Google Scholar 

  4. Kudaibergenov SE, Tatykhanova GS, Selenova BS (2016) Polymer protected and gel immobilized gold and silver nanoparticles in catalysis. J Inorg Organomet Polym Mater 26(6):1198–1211

    Article  CAS  Google Scholar 

  5. Wang B, Yu Y, Zhang H, Xuan Y, Chen G, Ma W, Yu J (2019) Carbon dots in a matrix: energy-transfer-enhanced room-temperature red phosphorescence. Angew Chem 131(51):18614–18619

    Article  ADS  Google Scholar 

  6. Wang D, Saleh NB, Sun W, Park CM, Shen C, Aich N, Su C (2019) Next-generation multifunctional carbon–metal nanohybrids for energy and environmental applications. Environ Sci Technol 53(13):7265–7287

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang S, Li L, Zhu Z, Zhao M, Zhang L, Zhang N, Li G (2019) Remarkable improvement in photocatalytic performance for tannery wastewater processing via SnS2 modified with N-doped carbon quantum dots: synthesis, characterization, and 4-nitrophenol-aided Cr (VI) photoreduction. Small 15(29):1804515

    Article  Google Scholar 

  8. Emam AN, Mostafa AA, Mohamed MB, Gadallah AS, El-Kemary M (2018) Enhancement of the collective optical properties of plasmonic hybrid carbon dots via localized surface plasmon. J Lumin 200:287–297

    Article  CAS  Google Scholar 

  9. Tan C, Chen J, Wu XJ, Zhang H (2018) Epitaxial growth of hybrid nanostructures. Nat Rev Mater 3(2):1–13

    Article  ADS  Google Scholar 

  10. Stephanopoulos N (2020) Hybrid nanostructures from the self-assembly of proteins and DNA. Chem 6(2):364–405

    Article  CAS  Google Scholar 

  11. Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed 49(29):4878–4897

    Article  CAS  Google Scholar 

  12. Rogez G, Massobrio C, Rabu P, Drillon M (2011) Layered hydroxide hybrid nanostructures: a route to multifunctionality. Chem Soc Rev 40(2):1031–1058

    Article  CAS  PubMed  Google Scholar 

  13. Zhang M, Wang W, Yuan P, Chi C, Zhang J, Zhou N (2017) Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis. Chem Eng J 330:1137–1147

    Article  CAS  Google Scholar 

  14. Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV (2017) Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem Rev 117(20):12942–13038

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Zhu J, Wei B (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45(11):3145–3187

    Article  CAS  PubMed  Google Scholar 

  16. Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3):427–443

    Article  CAS  PubMed  Google Scholar 

  17. Huang H, Xu Y, Tang CJ, Chen JR, Wang AJ, Feng JJ (2014) Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. New J Chem 38(2):784–789

    Article  CAS  Google Scholar 

  18. Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6(50):43989–44012

    Article  ADS  CAS  Google Scholar 

  19. Toumey C (2010) Tracing and disputing the story of nanotechnology. International handbook on regulating nanotechnologies. Edward Elgar Publishing, Cheltenham

    Google Scholar 

  20. Bohara RA (2019) Introduction and types of hybrid nanostructures for medical applications. Hybrid nanostructures for cancer theranostics. Elsevier, Amterdam, pp 1–16

    Google Scholar 

  21. Cheng L, Shen S, Shi S, Yi Y, Wang X, Song G, Liu Z (2016) FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv Funct Mater 26(13):2185–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Chen X (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31(11):3016–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, Liu Z (2015) Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9(1):950–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dai Y, Xiao H, Liu J, Yuan Q, Ma PA, Yang D, Lin J (2013) In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc 135(50):18920–18929

    Article  CAS  PubMed  Google Scholar 

  25. Tian J, Chen J, Liu J, Tian Q, Chen P (2018) Graphene quantum dot engineered nickel–cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy 48:284–291

    Article  CAS  Google Scholar 

  26. Tian X, Zhang L, Yang M, Bai L, Dai Y, Yu Z, Pan Y (2018) Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 10(1):e1476

    Google Scholar 

  27. Deng Y, Li E, Cheng X, Zhu J, Lu S, Ge C, Pan Y (2016) Facile preparation of hybrid core–shell nanorods for photothermal and radiation combined therapy. Nanoscale 8(7):3895–3899

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Thorat ND, Bohara RA, Malgras V, Tofail SA, Ahamad T, Alshehri SM, Yamauchi Y (2016) Multimodal superparamagnetic nanoparticles with unusually enhanced specific absorption rate for synergetic cancer therapeutics and magnetic resonance imaging. ACS Appl Mater Interfaces 8(23):14656–14664

    Article  PubMed  Google Scholar 

  29. Liu X, Niu C, Zhen X, Wang J, Su X (2015) Novel approach for synthesis of boehmite nanostructures and their conversion to aluminum oxide nanostructures for remove Congo red. J Colloid Interface Sci 452:116–125

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Liu H, Feng J, Jie W (2017) A review of noble metal (Pd, Ag, Pt, Au)–zinc oxide nanocomposites: synthesis, structures and applications. J Mater Sci: Mater Electron 28:16585–16597

    CAS  Google Scholar 

  31. Liu J, Lu S, Tang Q, Zhang K, Yu W, Sun H, Yang B (2017) One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale 9(21):7135–7142

    Article  CAS  PubMed  Google Scholar 

  32. Kim H, Mondal S, Jang B, Manivasagan P, Moorthy MS, Oh J (2018) Biomimetic synthesis of metal–hydroxyapatite (Au-HAp, Ag-HAp, Au-Ag-HAp): structural analysis, spectroscopic characterization and biomedical application. Ceram Int 44(16):20490–20500

    Article  CAS  Google Scholar 

  33. Gussone J, Reinhard C, Kasperovich G, Gherekhloo H, Merzouk T, Hausmann J (2014) In-situ investigation of microcrack formation and strains in Ag–Cu-based multi-metal matrix composites analyzed by synchrotron radiation. Mater Sci Eng A 612:102–114

    Article  CAS  Google Scholar 

  34. Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P (2017) Gold nanoparticle-based colorimetric biosensors. Nanoscale 10:18–33

    Article  CAS  PubMed  Google Scholar 

  35. Lisik K, Krokosz A (2021) Application of carbon nanoparticles in oncology and regenerative medicine. Int J Mol Sci 22(15):8341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alaghmandfard A, Sedighi O, Rezaei NT, Abedini AA, Khachatourian AM, Toprak MS, Seifalian A (2021) Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater Sci Eng C 120:111756

    Article  CAS  Google Scholar 

  37. Park SY, Lee CY, An HR, Kim H, Lee YC, Park EC, Lee HU (2017) Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications. Nanoscale 9(26):9210–9217

    Article  CAS  PubMed  Google Scholar 

  38. Kokorina AA, Bakal AA, Shpuntova DV, Kostritskiy AY, Beloglazova NV, De Saeger S, Goryacheva IY (2019) Gel electrophoresis separation and origins of light emission in fluorophores prepared from citric acid and ethylenediamine. Sci Rep 9(1):14665

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Liu J, Dong Y, Ma Y, Han Y, Ma S, Chen H, Chen X (2018) One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO− probing and cell imaging. Nanoscale 10(28):13589–13598

    Article  CAS  PubMed  Google Scholar 

  40. Liu Q, Zhang N, Shi H, Ji W, Guo X, Yuan W, Hu Q (2018) One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ions in aqueous solution. New J Chem 42(4):3097–3101

    Article  CAS  Google Scholar 

  41. Kumar R, Kumar VB, Gedanken A (2020) Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason Sonochem 64:105009

    Article  CAS  PubMed  Google Scholar 

  42. Xu J, Tao J, Su L, Wang J, Jiao T (2021) A critical review of carbon quantum dots: from synthesis toward applications in electrochemical biosensors for the determination of a depression-related neurotransmitter. Materials 14(14):3987

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen R, Liu G, Sun X, Cao X, He W, Lin X, Qin A (2020) Chitosan derived nitrogen-doped carbon dots suppress osteoclastic osteolysis via downregulating ROS. Nanoscale 12(30):16229–16244

    Article  CAS  PubMed  Google Scholar 

  44. Lin Y, Zhang M, Zhao L, Wang L, Cao D, Gong Y (2021) Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl Surf Sci 536:147952

    Article  CAS  Google Scholar 

  45. Wang C, Qi L (2020) Heterostructured inter-doped Ruthenium–cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew Chem 132(39):17372–17377

    Article  ADS  Google Scholar 

  46. Xu H, Wang J, Yan B, Zhang K, Li S, Wang C, Yang P (2017) Hollow Au × Ag/Au core/shell nanospheres as efficient catalysts for electrooxidation of liquid fuels. Nanoscale 9(35):12996–13003

    Article  CAS  PubMed  Google Scholar 

  47. Xu X, Tang W, Zhou Y, Bao Z, Su Y, Hu J, Zeng H (2017) Steering photoelectrons excited in carbon dots into platinum cluster catalyst for solar-driven hydrogen production. Adv Sci 4(12):1700273

    Article  Google Scholar 

  48. Li D, Zong Z, Tang Z, Liu Z, Chen S, Tian Y, Wang X (2018) Total water splitting catalyzed by Co@ Ir core–shell nanoparticles encapsulated in nitrogen-doped porous carbon derived from metal–organic frameworks. ACS Sustain Chem Eng 6(4):5105–5114

    Article  CAS  Google Scholar 

  49. Li J, Yang S, Deng Y, Chai P, Yang Y, He X, Fan X (2018) Emancipating target-functionalized carbon dots from autophagy vesicles for a novel visualized tumor therapy. Adv Funct Mater 28(30):1800881

    Article  Google Scholar 

  50. Huang Q, Hu S, Zhang H, Chen J, He Y, Li F, Lin Y (2013) Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine. Analyst 138(18):5417–5423

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Dimitrov N (2016) Recent advances in the growth of metals, alloys, and multilayers by surface limited redox replacement (SLRR) based approaches. Electrochim Acta 209:599–622

    Article  CAS  Google Scholar 

  52. Papadimitriou S, Tegou A, Pavlidou E, Armyanov S, Valova E, Kokkinidis G, Sotiropoulos S (2008) Preparation and characterisation of platinum-and gold-coated copper, iron, cobalt and nickel deposits on glassy carbon substrates. Electrochim Acta 53(22):6559–6567

    Article  CAS  Google Scholar 

  53. Liu H, Sun Y, Li Z, Yang J, Aryee AA, Qu L, Lin Y (2019) Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. Nanoscale 11(17):8458–8463

    Article  CAS  PubMed  Google Scholar 

  54. Liu ML, Chen BB, Li CM, Huang CZ (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21(3):449–471

    Article  CAS  Google Scholar 

  55. Yang M, Tang Q, Meng Y, Liu J, Feng T, Zhao X, Yang B (2018) Reversible “off–on” fluorescence of Zn2+-passivated carbon dots: mechanism and potential for the detection of EDTA and Zn2+. Langmuir 34(26):7767–7775

    Article  CAS  PubMed  Google Scholar 

  56. Lesani P, Singh G, Viray CM, Ramaswamy Y, Zhu DM, Kingshott P, Zreiqat H (2020) Two-photon dual-emissive carbon dot-based probe: deep-tissue imaging and ultrasensitive sensing of intracellular ferric ions. ACS Appl Mater Interfaces 12(16):18395–18406

    Article  CAS  PubMed  Google Scholar 

  57. Gao W, Song H, Wang X, Liu X, Pang X, Zhou Y, Peng X (2018) Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo. ACS Appl Mater Interfaces 10(1):1147–1154

    Article  CAS  PubMed  Google Scholar 

  58. Gao Y, Jiao Y, Lu W, Liu Y, Han H, Gong X, Dong C (2018) Carbon dots with red emission as a fluorescent and colorimeteric dual-readout probe for the detection of chromium (vi) and cysteine and its logic gate operation. J Mater Chem B 6(38):6099–6107

    Article  CAS  PubMed  Google Scholar 

  59. Wei JS, Ding C, Zhang P, Ding H, Niu XQ, Ma YY, Xiong HM (2019) Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv Mater 31(5):1806197

    Article  Google Scholar 

  60. Wei Z, Li H, Liu S, Wang W, Chen H, Xiao L, Chen X (2019) Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid. Anal Chem 91(24):15477–15483

    Article  CAS  PubMed  Google Scholar 

  61. Yang P, Zhu Z, Zhang T, Zhang W, Chen W, Cao Y, Zhou X (2019) Orange-emissive carbon quantum dots: toward application in wound pH monitoring based on colorimetric and fluorescent changing. Small 15(44):1902823

    Article  CAS  Google Scholar 

  62. Jiao Y, Gao Y, Meng Y, Lu W, Liu Y, Han H, Dong C (2019) One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications. ACS Appl Mater Interfaces 11(18):16822–16829

    Article  CAS  PubMed  Google Scholar 

  63. Yao W, Wu N, Lin Z, Chen J, Li S, Weng S, Zhang L, Liu, A, Lin X (2017) Fluorescent Turn-off Competitive Immunoassay for Biotin Based on Hydrothermally Synthesized Carbon Dots. Microchim Acta 184:907−914

  64. Gao G, Jiang YW, Yang J, Wu FG (2017) Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9(46):18368–18378

    Article  CAS  PubMed  Google Scholar 

  65. Cheng W, Xu J, Guo Z, Yang D, Chen X, Yan W, Miao P (2018) Hydrothermal synthesis of N, S co-doped carbon nanodots for highly selective detection of living cancer cells. J Mater Chem B 6(36):5775–5780

    Article  CAS  PubMed  Google Scholar 

  66. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957

    Article  CAS  Google Scholar 

  67. Xia C, Tao S, Zhu S, Song Y, Feng T, Zeng Q, Yang B (2018) Hydrothermal addition polymerization for ultrahigh-yield carbonized polymer dots with room temperature phosphorescence via nanocomposite. Chem A Eur J 24(44):11303–11308

    Article  CAS  Google Scholar 

  68. Su Q, Lu C, Yang X (2019) Efficient room temperature phosphorescence carbon dots: information encryption and dual-channel pH sensing. Carbon 152:609–615

    Article  CAS  Google Scholar 

  69. Li W, Zhou W, Zhou Z, Zhang H, Zhang X, Zhuang J, Hu C (2019) A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew Chem 131(22):7356–7361

    Article  ADS  Google Scholar 

  70. Tao S, Lu S, Geng Y, Zhu S, Redfern SA, Song Y, Yang B (2018) Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew Chem Int Ed 57(9):2393–2398

    Article  CAS  Google Scholar 

  71. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48(64):7955–7957

    Article  CAS  Google Scholar 

  72. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222

    Article  CAS  PubMed  Google Scholar 

  73. Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41(31):9526–9531

    Article  CAS  PubMed  Google Scholar 

  74. Dong Y, Zhou N, Lin X, Lin J, Chi Y, Chen G (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater 22(21):5895–5899

    Article  CAS  Google Scholar 

  75. Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3(1):1473

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  76. Shen C, Yao W, Lu Y (2013) One-step synthesis of intrinsically functionalized fluorescent carbon nanoparticles by hydrothermal carbonization from different carbon sources. J Nanopart Res 15:1–15

    Article  Google Scholar 

  77. Cailotto S, Negrato M, Daniele S, Luque R, Selva M, Amadio E, Perosa A (2020) Carbon dots as photocatalysts for organic synthesis: metal-free methylene–oxygen-bond photocleavage. Green Chem 22(4):1145–1149

    Article  Google Scholar 

  78. Xu L, Bai X, Guo L, Yang S, Jin P, Yang L (2019) Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2x nanocomposite for the efficient photoreduction of Cr (VI) under visible light. Chem Eng J 357:473–486

    Article  CAS  Google Scholar 

  79. Yan Y, Chen J, Li N, Tian J, Li K, Jiang J, Chen P (2018) Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS Nano 12(4):3523–3532

    Article  CAS  PubMed  Google Scholar 

  80. Sarma D, Majumdar B, Sarma TK (2019) Visible-light induced enhancement in the multi-catalytic activity of sulfated carbon dots for aerobic carbon–carbon bond formation. Green Chem 21(24):6717–6726

    Article  CAS  Google Scholar 

  81. Bhattacharyya S, Ehrat F, Urban P, Teves R, Wyrwich R, Döblinger M, Stolarczyk JK (2017) Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat Commun 8(1):1401

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  82. Han M, Lu S, Qi F, Zhu S, Sun H, Yang B (2020) Carbon dots–implanted graphitic carbon nitride nanosheets for photocatalysis: simultaneously manipulating carrier transport in inter-and interlayers. Solar RRL 4(4):1900517

    Article  CAS  Google Scholar 

  83. Han Y, Tang D, Yang Y, Li C, Kong W, Huang H, Kang Z (2015) Non-metal single/dual doped carbon quantum dots: a general flame synthetic method and electro-catalytic properties. Nanoscale 7(14):5955–5962

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Hu C, Li M, Qiu J, Sun YP (2019) Design and fabrication of carbon dots for energy conversion and storage. Chem Soc Rev 48(8):2315–2337

    Article  CAS  PubMed  Google Scholar 

  85. Shin J, Guo J, Zhao T, Guo Z (2019) Functionalized carbon dots on graphene as outstanding non-metal bifunctional oxygen electrocatalyst. Small 15(16):1900296

    Article  Google Scholar 

  86. Yang M, Feng T, Chen Y, Liu J, Zhao X, Yang B (2020) Synchronously integration of Co, Fe dual-metal doping in Ru@ C and CDs for boosted water splitting performances in alkaline media. Appl Catal B 267:118657

    Article  CAS  Google Scholar 

  87. Guo S, Zhao S, Wu X, Li H, Zhou Y, Zhu C, Kang Z (2017) A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nat Commun 8(1):1828

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  88. Ryan BJ, Carolan N, Ó’Fágáin C (2006) Horseradish and soybean peroxidases: comparable tools for alternative niches? Trends Biotechnol 24(8):355–363

    Article  CAS  PubMed  Google Scholar 

  89. Hui W, Yang Y, Xu Q, Gu H, Feng S, Su Z, Huang W (2020) Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv Mater 32(4):1906374

    Article  CAS  Google Scholar 

  90. Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:359–366

    Article  CAS  Google Scholar 

  91. Zheng H, Wang Q, Long Y, Zhang H, Huang X, Zhu R (2011) Enhancing the luminescence of carbon dots with a reduction pathway. Chem Commun 47(38):10650–10652

    Article  CAS  Google Scholar 

  92. Qing Y, Jiang Y, Lin H, Wang L, Liu A, Cao Y, Fan Z (2019) Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J Mater Chem A 7(11):6021–6027

    Article  CAS  Google Scholar 

  93. Strauss V, Marsh K, Kowal MD, El-Kady M, Kaner RB (2018) A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv Mater 30(8):1704449

    Article  Google Scholar 

  94. Jia H, Cai Y, Lin J, Liang H, Qi J, Cao J, Fei W (2018) Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv Sci 5(5):1700887

    Article  Google Scholar 

  95. Lin F, Li C, Dong L, Fu D, Chen Z (2017) Imaging biofilm-encased microorganisms using carbon dots derived from L. plantarum. Nanoscale 9(26):9056–9064

    Article  CAS  PubMed  Google Scholar 

  96. Lin CJ, Chang L, Chu HW, Lin HJ, Chang PC, Wang RY, Huang CC (2019) High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small 15(41):1902641

    Article  CAS  Google Scholar 

  97. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253

    Article  CAS  Google Scholar 

  98. Sung SY, Su YL, Cheng W, Hu PF, Chiang CS, Chen WT, Hu SH (2018) Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges. Nano Lett 19(1):69–81

    Article  ADS  PubMed  Google Scholar 

  99. Ghosh S, Ghosal K, Mohammad SA, Sarkar K (2019) Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy. Chem Eng J 373:468–484

    Article  CAS  Google Scholar 

  100. Han J, Na K (2019) Transfection of the TRAIL gene into human mesenchymal stem cells using biocompatible polyethyleneimine carbon dots for cancer gene therapy. J Ind Eng Chem 80:722–728

    Article  CAS  Google Scholar 

  101. Tong T, Hu H, Zhou J, Deng S, Zhang X, Tang W, Liang J (2020) Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small 16(13):1906206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jun Han Z, Rider AE, Ishaq M, Kumar S, Kondyurin A, Bilek MMM, Levchenko I, Ostrikov K (2013) Carbon nanostructures for hard tissue engineering. RSC Adv 3:11058–11072

    Article  ADS  Google Scholar 

  103. Yan C, Ren Y, Sun X, Jin L, Liu X, Chen H, Zhao Y (2020) Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. J Photochem Photobiol B: Biol 202:111680

    Article  CAS  Google Scholar 

  104. Gogoi S, Karak N (2017) Solar-driven hydrogen peroxide production using polymer-supported carbon dots as heterogeneous catalyst. Nanomicro Lett 9:1-11

    Google Scholar 

  105. Wang H, Wei Z, Matsui H, Zhou S (2014) Fe3O4/carbon quantum dots hybrid nanoflowers for highly active and recyclable visible-light driven photocatalyst. J Mater Chem A 2(38):15740–15745

    Article  CAS  Google Scholar 

  106. Fu Y, Xia Y, Zhu C, Hu L, Zhang K, Wu H, Kang Z (2018) Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light. Nanoscale 10(5):2454–2460

    Article  PubMed  Google Scholar 

  107. Zhao X, Tang Q, Zhu S, Bu W, Yang M, Liu X, Yang B (2019) Controllable acidophilic dual-emission fluorescent carbonized polymer dots for selective imaging of bacteria. Nanoscale 11(19):9526–9532

    Article  CAS  PubMed  Google Scholar 

  108. Gholinejad M, Najera C, Hamed F, Seyedhamzeh M, Bahrami M, Kompany-Zareh M (2017) Green synthesis of carbon quantum dots from vanillin for modification of magnetite nanoparticles and formation of palladium nanoparticles: efficient catalyst for Suzuki reaction. Tetrahedron 73(38):5585–5592

    Article  CAS  Google Scholar 

  109. Fu Y, Qin L, Huang D, Zeng G, Lai C, Li B, Wen X (2019) Chitosan functionalized activated coke for Au nanoparticles anchoring: Green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes. Appl Catal B: Environ 255:117740

    Article  CAS  Google Scholar 

  110. Huang Q, Lin X, Zhu JJ, Tong QX (2017) Pd-Au@ carbon dots nanocomposite: facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens Bioelectron 94:507–512

    Article  CAS  PubMed  Google Scholar 

  111. Innocenzi P, Stagi L (2020) Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes. A perspective. Chem sci 11(26):6606-6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fahmi MZ, Sukmayani W, Khairunisa SQ, Witaningrum AM, Indriati DW, Matondang MQY, Kameoka M (2016) Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv 6(95):92996–93002

    Article  ADS  CAS  Google Scholar 

  113. Barras A, Pagneux Q, Sane F, Wang Q, Boukherroub R, Hober D, Szunerits S (2016) High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl Mater Interfaces 8(14):9004–9013

    Article  CAS  PubMed  Google Scholar 

  114. Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC (2019) Graphene oxide and carbon dots as broad-spectrum antimicrobial agents—a minireview. Nanoscale Horiz 4(1):117–137

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Bing W, Sun H, Yan Z, Ren J, Qu X (2016) Programmed bacteria death induced by carbon dots with different surface charge. Small 12(34):4713–4718

    Article  CAS  PubMed  Google Scholar 

  116. Yang J, Zhang X, Ma YH, Gao G, Chen X, Jia HR, Wu FG (2016) Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces 8(47):32170–32181

    Article  CAS  PubMed  Google Scholar 

  117. Sun R, Chen H, Sutrisno L, Kawazoe N, Chen G (2021) Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications. Sci Technol Adv Mater 22(1):404–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529(7586):336–343

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Roope LS, Smith RD, Pouwels KB, Buchanan J, Abel L, Eibich P, Wordsworth S (2019) The challenge of antimicrobial resistance: what economics can contribute. Science 364(6435):4679

    Article  Google Scholar 

  120. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Hopkins S (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 19(1):56–66

    Article  PubMed  PubMed Central  Google Scholar 

  121. Van Duin D, Paterson DL (2016) Multidrug-resistant bacteria in the community: trends and lessons learned. Infect Dis Clin 30(2):377–390

    Article  Google Scholar 

  122. Neill J (2018) Tackling drug-resistant infections globally: final report and recommendations. 2016.

  123. Karam G, Chastre J, Wilcox MH, Vincent JL (2016) Antibiotic strategies in the era of multidrug resistance. Crit Care 20(1):1–9

    Article  Google Scholar 

  124. Zgurskaya HI, Lopez CA, Gnanakaran S (2015) Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infect Dis 1(11):512–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Knoblauch R, Geddes CD (2020) Carbon nanodots in photodynamic antimicrobial therapy: a review. Materials 13(18):4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yougbaré S, Mutalik C, Krisnawati DI, Kristanto H, Jazidie A, Nuh M, Kuo TR (2020) Nanomaterials for the photothermal killing of bacteria. Nanomaterials 10(6):1123

    Article  PubMed  PubMed Central  Google Scholar 

  127. Gao S, Yan X, Xie G, Zhu M, Ju X, Stang PJ, Niu Z (2019) Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein. Proc Natl Acad Sci 116(47):23437–23443

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dong X, Ge L, Rabe DIA, Mohammed OO, Wang P, Tang Y, Sun YP (2020) Photoexcited state properties and antibacterial activities of carbon dots relevant to mechanistic features and implications. Carbon 170:137–145

    Article  CAS  Google Scholar 

  129. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381

    Article  CAS  PubMed  Google Scholar 

  130. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  PubMed  Google Scholar 

  131. Yu H, Shi R, Zhao Y, Waterhouse GI, Wu LZ, Tung CH, Zhang T (2016) Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater 28(43):9454–9477

    Article  CAS  PubMed  Google Scholar 

  132. Du J, Xu N, Fan J, Sun W, Peng X (2019) Carbon dots for in vivo bioimaging and theranostics. Small 15(32):1805087

  133. Swift TA, Oliver TA, Galan MC, Whitney HM (2019) Functional nanomaterials to augment photosynthesis: evidence and considerations for their responsible use in agricultural applications. J R Soc Interface Focus 9(1):20180048

    Article  Google Scholar 

  134. Ghosal K, Ghosh A (2019) Carbon dots: the next generation platform for biomedical applications. Mater Sci Eng, C 96:887–903

    Article  CAS  Google Scholar 

  135. Chang HT, Chen TH, Periasamy AP (2019) U.S. Patent No. 10,383,829. U.S. Patent and Trademark Office, Washington

    Google Scholar 

  136. Chen TH, Chang HT (2017) Stable and photoswitchable carbon-dot liposome. ACS Appl Mater Interfaces 9(51):44259–44263

    Article  CAS  PubMed  Google Scholar 

  137. Ross S, Wu RS, Wei SC, Ross GM, Chang HT (2020) The analytical and biomedical applications of carbon dots and their future theranostic potential: a review. J Food Drug Anal 28(4):677

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheer, T., Zia, S., Pal, K. et al. Recent Trends in Nobel Metals and Carbon Dots in the Costume of Hybrid Nano Architecture. Top Catal 67, 280–299 (2024). https://doi.org/10.1007/s11244-023-01869-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01869-6

Keywords

Navigation