Skip to main content
Log in

One-step synthesis of intrinsically functionalized fluorescent carbon nanoparticles by hydrothermal carbonization from different carbon sources

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Highly functionalized carbon nanoparticles (F-CNPs) with average sizes of 5–30 nm were fabricated by hydrothermal carbonization of specific carbon sources at a mild temperature without usual strong acid treatment or surface modification. The morphology, structure, and fluorescent properties of the nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectra, X-ray photoelectron spectroscopy, Raman spectra and fluorescent spectrophotometer. As a result, the abundant carboxylic, sulfonic, amine, or ethanamide groups were furnished on the surface of these carbon nanoparticles, offering the reaction sites for their possible further functionalization, and these functional groups also enhance the dispersion of carbon nanoparticles which are kept without precipitation for months. The hydrothermal treatment which is simple, green, and economical, also can endow the F-CNPs much more carboxyl groups, thus improving the quantum efficiency of as-prepared products. These functionalized carbon nanoparticles demonstrate the excitation wavelength-independent photoluminescence behavior, implying their potential applications in biological labeling, imaging, and chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aga RS, Gunther D, Ueda A, Pan Z, Collins WE, Mu R, Singer KD (2009) Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots. Nanotechnology 20:465204. doi:10.1088/0957-4484/20/46/465204

    Article  Google Scholar 

  • Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744. doi:10.1002/anie.200906623

    Article  CAS  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. doi:10.1126/science.281 5385.2013

    Article  CAS  Google Scholar 

  • Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PJG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319. doi:10.1021/ja073527l

    Article  CAS  Google Scholar 

  • Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018. doi:10.1126/science.281 5385.2016

    Article  CAS  Google Scholar 

  • Daniela AG, Nicolas AM, Nicolas AV, Guido CM, Ramiro AP (2012) Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria. J Nanopart Res 14:1286. doi:10.1007/s11051-012-1286-6

    Article  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. doi:10.1021/nl0347334

    Article  CAS  Google Scholar 

  • Djie HS, Ooi BS, Fang XM, Wu Y, Fastenau JM, Liu WK, Hopkinson M (2007) Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser. Opt Lett 32:44–46. doi:10.1364/OL.32.000044

    Article  CAS  Google Scholar 

  • Fang YX, Guo SJ, Li D, Zhu CZ, Ren W, Dong SJ, Wang EK (2012) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6(1):400–409. doi:10.1021/nn2046373

    Article  CAS  Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. doi:10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  • Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Borczyskowski V (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014. doi:10.1126/science.276 5321.2012

    Article  CAS  Google Scholar 

  • Guldi DM, Holzinger M, Hirsch A, Georgakilas V, Prato M (2003) First comparative emission assay of single-wall carbon nanotubes-solutions and dispersions. Chem Commun 10:1130–1131. doi:10.1039/B301422C

    Article  Google Scholar 

  • Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488. doi:10.1039/B812943F

    Article  CAS  Google Scholar 

  • Jang J, Bae J, Park E (2006) Polyacrylonitrile nanofibers: formation mechanism and applications as a photoluminescent material and carbon-nanofiber precursor. Adv Funct Mater 16:1400–1406. doi:10.1002/adfm.200500598

    Article  CAS  Google Scholar 

  • Jiang W, Singhal A, Zheng JN, Wang C, Chan WCW (2006) Optimizing the synthesis of red- to near-IR-emitting CdS-capped CdTexSe1-x alloyed quantum dots for biomedical imaging. Chem Mater 18:4845–4854. doi:10.1021/cm061311x

    Article  CAS  Google Scholar 

  • Jiang JG, Wang XS, Lu XY, Lu Y (2008) Stereoregular polyacrylamide and its copolymer brushes: preparation and surface characters. Appl Surf Sci 255:1888–1893. doi:10.1016/j.apsusc.2008.06.119

    Article  CAS  Google Scholar 

  • Jun M, Shao Y, Ho CT, Koetter U, Lech S (2003) Structural identification of nonvolatile dimerization products of glucosamine by gas chromatography–mass spectrometry, liquid chromatography–mass spectrometry, and nuclear magnetic resonance analysis. J Agric Food Chem 51:6340–6346. doi:10.1021/jf034587n

    Article  CAS  Google Scholar 

  • Kikuchi E, Kitada S, Ohno A, Aramaki S, Maenosono S (2008) Solution-processed polymer-free photovoltaic devices consisting of PbSe colloidal quantum dots and tetrabenzoporphyrins. Appl Phys Lett 92:173307–173309. doi:10.1063/1.2920166

    Article  Google Scholar 

  • Lee SY, Kim K, Shon HK, Kim SD, Cho J (2011) Biotoxicity of nanoparticles: effect of natural organic matter. J Nanopart Res 13:3051–3061. doi:10.1007/s11051-010-0204-z

    Article  CAS  Google Scholar 

  • Leschkies KS, Divakar R, Basu J, Enache-Pommer E, Boercker JE, Carter CB, Kortshagen UR, Norris DJ, Aydil ES (2007) Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett 7:1793–1798. doi:10.1021/nl070430o

    Article  CAS  Google Scholar 

  • Liu HP, Ye T, Mao CD (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46:6473–6475. doi:10.1002/anie.200701271

    Article  CAS  Google Scholar 

  • Marcus P, Bussell ME (1992) XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels. Appl Surf Sci 59:7–21. doi:10.1016/0169-4332(92)90163-R

    Article  CAS  Google Scholar 

  • Maruyama S, Kawanishi Y (2002) Syntheses and emission properties of novel violet–blue emissive aromatic bis(diazaborole)s. J Mater Chem 12:2245–2249. doi:10.1039/B203485A

    Article  CAS  Google Scholar 

  • McGuire GE, Schweitzer GK, Carlson TA (1973) Core electron binding energies in some group IIIA, VB, and VIB compounds. Inorg Chem 12(10):2450–2453. doi:10.1021/ic50128a045

    Article  CAS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi:10.1126/science.1104274

    Article  CAS  Google Scholar 

  • Mirtchev P, Henderson EJ, Soheilnia N, Christopher MY, Geoffrey AO (2012) Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J Mater Chem 22:1265–1269. doi:10.1039/C1JM14112K

    Article  CAS  Google Scholar 

  • Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenges. J Nanomedic Nanotechnol 2:103. doi:10.4172/2157-7439.1000103e

    Article  Google Scholar 

  • Okazaki Y, Tateishi T, Ito Y (1997) Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films. Mater Trans 38(1):78–84. http://www.jim.or.jp/journal/e/38/01/78.html

    Google Scholar 

  • Pan DY, Zhang JC, Li Z, Wu MH (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738. doi:10.1002/adma.200902825

    Article  Google Scholar 

  • Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551. doi:10.1021/jp905912n

    Article  CAS  Google Scholar 

  • Riggs JE, Guo ZX, Carroll DL, Sun YP (2000) Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 122:5879–5880. doi:10.1021/ja9942282

    Article  CAS  Google Scholar 

  • Robert SW, Bernhard CB, Raoul B et al (2012) On the mechanisms of Ni-catalysed graphene chemical vapour deposition. Chem Phys Chem 13:2544–2549. doi:10.1002/cphc.201101020

    Article  Google Scholar 

  • Selvi BR, Jagadeesan D, Suma BS, Nagashankar G, Arif M, Balasubramanyam K (2008) Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett 8:3182–3188. doi:10.1021/nl801503m

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15(16):4195–4203. doi:10.1002/chem.200802097

    Article  CAS  Google Scholar 

  • Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20:2454–2469. doi:10.1016/j.bios.2004.11.003

    Article  CAS  Google Scholar 

  • Shim JY, Cho IK, Khurana HK, Li QX, Jun S (2008) Attenuated total reflectance-fourier transform infrared spectroscopy coupled with multivariate analysis for measurement of acesulfame-k in diet foods. J Food Sci 73(5):426–431. doi:10.1111/j.1750-3841.2008.00751.x

    Article  Google Scholar 

  • Sun XM, Li YD (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43(5):597–601. doi:10.1002/anie.200352386

    Article  Google Scholar 

  • Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757. doi:10.1021/ja062677d

    Article  CAS  Google Scholar 

  • Tian L, Ghosh D, Chen W, Pradhan S, Chang XJ, Chen SW (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21:2803–2809. doi:10.1021/cm900709w

    Article  CAS  Google Scholar 

  • Wang F, Xie Z, Zhang H, Liu CY, Zhang YG (2011) Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater 21:1027–1031. doi:10.1002/adfm.201002279

    Article  CAS  Google Scholar 

  • Yang ST, Cao LT, Luo PG, Lu FS, Wang X, Wang HF, Meziani MJ, Liu YF, Qi G, Sun YP (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309. doi:10.1021/ja904843x

    Article  CAS  Google Scholar 

  • Yang YH, Cui JH, Zheng MT, Hu CF, Tan SZ, Xiao Y, Yang Q, Liu YL (2011a) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382. doi:10.1039/c1cc15678k

    Article  Google Scholar 

  • Yang ZC, Li X, Wang John (2011b) Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon 49:5207–5212. doi:10.1016/j.carbon.2011.07.038

    Article  CAS  Google Scholar 

  • Zhang YQ, Ma DK, Zhuang Y, Zhang X, Chen W, Hong LL, Yan QX, Yu K, Huang SM (2012) One-pot synthesis of N-doped carbon dots with tunable luminescence properties. J Mater Chem 22:16714–16718. doi:10.1039/c2jm32973e

    Article  CAS  Google Scholar 

  • Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118. doi:10.1039/B812420E

    Article  Google Scholar 

  • Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565. doi:10.1021/ja809073f

    Article  CAS  Google Scholar 

  • Zhou JG, Booker C, Li RY, Zhou XT, Sham TK, Sun XL, Ding ZF (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745. doi:10.1021/ja0669070

    Article  CAS  Google Scholar 

  • Zhou J, Wang C, Qian ZS, Chen CC, Ma JJ, Du GH, Chen JR, Hui F (2012) Highly efficient fluorescent multi-walled carbon nanotubes functionalized with diamines and amides. J Mater Chem 22:11912–11914. doi:10.1039/C2JM31192E

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21174059), Open Project of State Key Laboratory of Supramolecular structure and Materials (SKLSSM201308) and the Testing Foundation of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, C., Yao, W. & Lu, Y. One-step synthesis of intrinsically functionalized fluorescent carbon nanoparticles by hydrothermal carbonization from different carbon sources. J Nanopart Res 15, 2019 (2013). https://doi.org/10.1007/s11051-013-2019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2019-1

Keywords

Navigation