Skip to main content
Log in

Efficient Detection of Droxidopa in the Presence of Carbidopa Using a Modified Screen-Printed Graphite Electrode

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The determination of pharmaceutical compounds in various samples is considered an effective way to evaluate their effectiveness. Nanomaterials-based electrochemical sensors have proven to offer the desired affordability, portability and high-performance for this purpose. In this work, an electrochemical sensor is described to detect droxidopa in the presence of carbidopa using a screen-printed graphite electrode (SPGE) modified with graphitic carbon nitride (g-C3N4). Admirable electrocatalytic behavior was found for g-C3N4/SPGE towards the droxidopa oxidation, with minimized oxidation overpotential and boosted voltammetric response peak current. Under the optimal circumstances, the peak currents of droxidopa oxidation were proportional to its concentrations (0.15–325.0 µM), with the limit of detection of 0.04 µM. Also, this sensor was applied to detect droxidopa in the presence of carbidopa. The g-C3N4/SPGE successfully resolved the oxidation signals of droxidopa and carbidopa, and the peak separation was calculated to be 310 mV. The g-C3N4/SPGE presented good stability, and repeatability. Finally, the developed g-C3N4/SPGE sensor displayed a satisfactory recovery of the spiked droxidopa and carbidopa in real-sample matrices (tap water and urine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie J, Shen Z, Anraku Y, Kataoka K, Chen X (2019) Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 224:119491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Despas F, Pathak A, Berry M, Cagnac R, Massabuau P, Liozon E, Senard JM (2010) DBH deficiency in an elderly patient: efficacy and safety of chronic droxidopa. Clin Auton Res 20:205–207

    Article  PubMed  Google Scholar 

  3. Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R (2017) Dopamine and levodopa prodrugs for the treatment of Parkinson’s disease. Molecules 23:40

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qu M, Lin Q, Huang L, Fu Y, Wang L, He S, Sun X (2018) Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J Control Release 287:156–166

    Article  CAS  PubMed  Google Scholar 

  5. Yeggoni DP, Subramanyam R (2014) Binding studies of L-3,4-dihydroxyphenylalanine with human serum albumin. Mol BioSyst 10:3101–3110

    Article  CAS  PubMed  Google Scholar 

  6. Kaufmann H, Norcliffe-Kaufmann L, Hewitt LA, Rowse GJ, White WB (2016) Effects of the novel norepinephrine prodrug, droxidopa, on ambulatory blood pressure in patients with neurogenic orthostatic hypotension. J Am Soc Hyperten 10:819–826

    Article  CAS  Google Scholar 

  7. Pålhagen SE, Sydow O, Johansson A, Nyholm D, Holmberg B, Widner H, Marshall TS (2016) Levodopa-carbidopa intestinal gel (LCIG) treatment in routine care of patients with advanced Parkinson’s disease: an open-label prospective observational study of effectiveness, tolerability and healthcare costs. Parkinson Relat Disord 29:17–23

    Article  Google Scholar 

  8. Zapata-Urzúa C, Pérez-Ortiz M, Bravo M, Olivieri AC, Álvarez-Lueje A (2010) Simultaneous voltammetric determination of levodopa, carbidopa and benserazide in pharmaceuticals using multivariate calibration. Talanta 82:962–968

    Article  PubMed  Google Scholar 

  9. Bugamelli F, Marcheselli C, Barba E, Raggi MA (2011) Determination of l-dopa, carbidopa, 3-O-methyldopa and entacapone in human plasma by HPLC–ED. J Pharm Biomed Anal 54:562–567

    Article  CAS  PubMed  Google Scholar 

  10. Van de Merbel NC, Bronsema KJ, Gorman SH, Bakhtiar R (2017) Sensitivity improvement of the LC–MS/MS quantification of carbidopa in human plasma and urine by derivatization with 2, 4-pentanedione. J Chromatogr B 1064:62–67

    Article  Google Scholar 

  11. Raut PP, Charde SY (2014) Simultaneous estimation of levodopa and carbidopa by RP-HPLC using a fluorescence detector: its application to a pharmaceutical dosage form. Luminescence 29:762–771

    Article  CAS  PubMed  Google Scholar 

  12. Wollmer E, Klein S (2017) Development and validation of a robust and efficient HPLC method for the simultaneous quantification of levodopa, carbidopa, benserazide and entacapone in complex matrices. J Pharm Pharm Sci 20:258–269

    Article  CAS  PubMed  Google Scholar 

  13. Özdokur KV, Engin E, Yengin Ç, Ertaş H, Ertaş FN (2018) Determination of carbidopa, levodopa, and droxidopa by high-performance liquid chromatography–tandem mass spectrometry. Anal Lett 51:73–82

    Article  Google Scholar 

  14. Abdel-Ghany MF, Hussein LA, Ayad MF, Youssef MM (2017) Investigation of different spectrophotometric and chemometric methods for determination of entacapone, levodopa and carbidopa in ternary mixture. Spectrochim Acta Part A Mol Biomol Spectrosc 171:236–245

    Article  CAS  Google Scholar 

  15. Wang H, Yang G, Zhou J, Pei J, Zhang Q, Song X, Sun Z (2016) Development and validation of a UPLC–MS/MS method for quantitation of droxidopa in human plasma: application to a pharmacokinetic study. J Chromatogr B 1027:234–238

    Article  CAS  Google Scholar 

  16. Wikberg T (1991) Simultaneous determination of levodopa, its main metabolites and carbidopa in plasma by liquid chromatography. J Pharm Biomed Anal 9:167–176

    Article  CAS  PubMed  Google Scholar 

  17. Baghayeri M (2017) Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: application to determination of droxidopa in presence of phenobarbital. Sens Actuators B Chem 240:255–263

    Article  CAS  Google Scholar 

  18. Wang Q, Das MR, Li M, Boukherroub R, Szunerits S (2013) Voltammetric detection of l-dopa and carbidopa on graphene modified glassy carbon interfaces. Bioelectrochemistry 93:15–22

    Article  CAS  PubMed  Google Scholar 

  19. Khoobi A, Attaran AM, Yousofi M, Enhessari M (2019) A sensitive lead titanate nano-structured sensor for electrochemical determination of pentoxifylline drug in real samples. J Nanostruct Chem 9:29–37

    Article  CAS  Google Scholar 

  20. Zhang Z, Karimi-Maleh H (2023) In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324:138302

    Article  CAS  PubMed  Google Scholar 

  21. Foroughi MM, Beitollahi H, Tajik S, Akbari A, Hosseinzadeh R (2014) Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int J Electrochem Sci 9:8407

    Article  Google Scholar 

  22. Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Raman PKY, Karaman C (2022) Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 287:132187

    Article  CAS  PubMed  Google Scholar 

  23. Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H (2020) Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 566:463–472

    Article  CAS  PubMed  Google Scholar 

  24. Karimi F, Tiri RNE, Aygun A, Gulbagca F, Özdemir S, Gonca S, Gur T, Sen F (2023) One-step synthesized biogenic nanoparticles using Linum usitatissimum: application of sun-light photocatalytic, biological activity and electrochemical H2O2 sensor. Environ Res 218:114757

    Article  CAS  PubMed  Google Scholar 

  25. Freires AS, dos Reis Lima FM, Yotsumoto-Neto S, Silva SM, Damos FS, Luz RDCS (2018) Exploiting CdSe/ZnS core-shell photocatalyst modified with cytochrome c for epinephrine determination in drugs utilized in cardiopulmonary resuscitation. Microchem J 139:18–23

    Article  CAS  Google Scholar 

  26. Tajik S, Aflatoonian MR, Beitollahi H, Sheikhshoaie I, Dourandish Z, Garkani-Nejad F, Bamorovat M (2020) Electrocatalytic oxidation and selective voltammetric detection of methyldopa in the presence of hydrochlorothiazide in real samples. Microchem J 158:105182

    Article  CAS  Google Scholar 

  27. Hosseini Fakhrabad A, Sanavi Khoshnood R, Abedi MR, Ebrahimi M (2021) Fabrication a composite carbon paste electrodes (CPEs) modified with Multi-Wall Carbon Nano-Tubes (MWCNTs/N, N-Bis (salicyliden)-1, 3-propandiamine) for determination of lanthanum (III). Eurasian Chem Commun 3:627–634

    Google Scholar 

  28. Mehdizadeh Z, Shahidi S, Ghorbani-HasanSaraei A, Limooei M, Bijad M (2022) Monitoring of amaranth in drinking samples using voltammetric amplified electroanalytical sensor. Chem Methodol 6:246–252

    CAS  Google Scholar 

  29. Yue HY, Song SS, Huang S, Zhang H, Gao XP, Gao X, Zhang HJ (2017) Preparation of MoS2-graphene hybrid nanosheets and simultaneously electrochemical determination of levodopa and uric acid. Electroanalysis 29:2565–2571

    Article  CAS  Google Scholar 

  30. Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA (2019) The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 554:603–610

    Article  CAS  PubMed  Google Scholar 

  31. Beitollahi H, Mahmoudi Moghaddam H, Tajik S (2019) Voltammetric determination of bisphenol A in water and juice using a lanthanum (III)-doped cobalt (II, III) nanocube modified carbon screen-printed electrode. Anal Lett 52:1432–1444

    Article  CAS  Google Scholar 

  32. Bijad M, Karimi-Maleh H, Farsi M, Shahidi SA (2018) An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J Food Meas Charact 12:634–640

    Article  Google Scholar 

  33. Altuner EE, Ozalp VC, Yilmaz MD, Sudagidan M, Aygun A, Acar EE, Tasbasi BB, Sen F (2022) Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles. Chemosphere 297:134077

    Article  CAS  PubMed  Google Scholar 

  34. Žabčíková S, Červenka L, Ertek B, Dilgin Y (2015) Sensitive voltammetric determination of natural flavonoid quercetin on a disposable graphite lead. Food Technol Biotechnol 53:379

    PubMed  PubMed Central  Google Scholar 

  35. Ganesh PS, Shimoga G, Kim SY, Lee SH, Kaya S, Salim R (2021) Quantum chemical studies and electrochemical investigations of pyrogallol red modified carbon paste electrode fabrication for sensor application. Microchem J 167:106260

    Article  CAS  Google Scholar 

  36. Guo W, Xu H, Chen C, Cao X, Ma J, Liu Y (2022) Determination of U (VI) by differential pulse stripping voltammetry using a polydopamine/reduced graphene oxide nanocomposite modified glassy carbon electrode. Microchem J 175:107111

    Article  CAS  Google Scholar 

  37. Buledi JA, Mahar N, Mallah A, Solangi AR, Palabiyik IM, Qambrani N, Karimi F, Vasseghian Y, Karimi-Maleh H (2022) Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation. Food Chem Toxicol 161:112843

    Article  CAS  PubMed  Google Scholar 

  38. Harismah K, Mirzaei M, Da’I M, Roshandel Z, Salarrezaei E (2021) In silico investigation of nanocarbon biosensors for diagnosis of COVID-19. Eurasian Chem Commun 3:95–102

    CAS  Google Scholar 

  39. Joshi P, Mehtab S, Zaidi MGH, Tyagi T, Bisht A (2020) Development of polyindole/tungsten carbide nanocomposite-modified electrodes for electrochemical quantification of chlorpyrifos. J Nanostruct Chem 10:33–45

    Article  CAS  Google Scholar 

  40. Karimi-Maleh H, Darabi R, Karimi F, Karaman C, Shahidi SA, Zare N, Baghayeri M, Fu L, Rostamnia S, Rouhi J (2023) State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: a review. Environ Res 222:115338

    Article  CAS  PubMed  Google Scholar 

  41. Tajik S, Orooji Y, Karimi F, Ghazanfari Z, Beitollahi H, Shokouhimehr M, Varma RS, Jang HW (2021) High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J Food Meas Charact 15:4617–4622

    Article  Google Scholar 

  42. Tajik S, Beitollahi H, Jang HW, Shokouhimehr M (2021) A screen printed electrode modified with Fe3O4@ polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta 232:122379

    Article  CAS  PubMed  Google Scholar 

  43. Bekmezci M, Ozturk H, Akin M, Bayat R, Sen F, Darabi R, Karimi-Maleh H (2023) Bimetallic biogenic Pt-Ag nanoparticle and their application for electrochemical dopamine sensor. Biosensors 13:531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alizadeh M, Asrami PN, Altuner EE, Gulbagca F, Tiri RNE, Aygun A, Kaynak İ, Sen F, Cheraghi S (2022) An ultra-sensitive rifampicin electrochemical sensor based on Fe3O4 nanoparticles anchored multiwalled carbon nanotube modified glassy carbon electrode. Chemosphere 309:136566

    Article  CAS  PubMed  Google Scholar 

  45. Dechtrirat D, Yingyuad P, Prajongtat P, Chuenchom L, Sriprachuabwong C, Tuantranont A, Tang IM (2018) A screen-printed carbon electrode modified with gold nanoparticles, poly (3, 4-ethylenedioxythiophene), poly (styrene sulfonate) and a molecular imprint for voltammetric determination of nitrofurantoin. Microchim Acta 185:1–9

    Article  CAS  Google Scholar 

  46. Magar HS, Hassan RY, Abbas MN (2023) Non-enzymatic disposable electrochemical sensors based on CuO/Co3O4@MWCNTs nanocomposite modified screen-printed electrode for the direct determination of urea. Sci Rep 13:2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mincu NB, Lazar V, Stan D, Mihailescu CM, Iosub R, Mateescu AL (2020) Screen-printed electrodes (SPE) for in vitro diagnostic purpose. Diagnostics 10:517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2020) Screen-printed electrodes: promising paper and wearable transducers for (bio) sensing. Biosensors 10:76

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sher M, Faheem A, Asghar W, Cinti S (2021) Nano-engineered screen-printed electrodes: a dynamic tool for detection of viruses. TrAC Trends Anal Chem 143:116374

    Article  CAS  Google Scholar 

  50. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181:865–891

    Article  CAS  Google Scholar 

  51. Farhadi B, Ebrahimi M, Morsali A (2021) Microextraction and determination trace amount of propranolol in aqueous and pharmaceutical samples with oxidized multiwalled carbon nanotubes. Chem Methodol 5:227–233

    Google Scholar 

  52. Karaman C, Karaman O, Show PL, Orooji Y, Karimi-Maleh H (2021) Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environ Res 207:112156

    Article  PubMed  Google Scholar 

  53. Tallapaneni V, Mude L, Pamu D, Karri VVSR (2022) Formulation, characterization and in vitro evaluation of dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds. J Med Chem Sci 5:1059–1074

    CAS  Google Scholar 

  54. Derakhshan-Nejad A, Cheraghi M, Rangkooy HA, Jalillzadeh Yengejeh R (2021) Photo catalytic activity of TiO2 immobilized on a 13X zeolite based in removal of ethyl benzene vapors under visible light irradiation. Chem Methodol 5:50–58

    CAS  Google Scholar 

  55. Sheikhshoaie I, Rezazadeh A, Ramezanpour S (2022) Removal of pb (II) from aqueous solution by gel combustion of a new nano sized Co3O4/ZnO composite. Asian J Nanosci Mater 5:336–345

    CAS  Google Scholar 

  56. Kavade R, Khanapure R, Gawali U, Patil A, Patil S (2022) Degradation of methyl orange under visible light by ZnO-polyaniline nanocomposites. J Appl Organomet Chem 2:101–112

    Google Scholar 

  57. Janitabar Darzi S, Bastami H (2022) Au decorated mesoporous TiO2 as a high performance photocatalyst towards crystal violet dye. Adv J Chem A 5:22–30

    Google Scholar 

  58. Ameen F, Karimi-Maleh H, Darabi R, Akin M, Ayati A, Ayyildiz S, Bekmezci M, Bayat R, Sen F (2023) Synthesis and characterization of activated carbon supported bimetallic pd based nanoparticles and their sensor and antibacterial investigation. Environ Res 221:115287

    Article  CAS  PubMed  Google Scholar 

  59. Khand NH, Palabiyik IM, Buledi JA, Ameen S, Memon AF, Ghumro T, Solangi AR (2021) Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples. J Nanostruct Chem 11:455–468

    Article  CAS  Google Scholar 

  60. Zhang Z, Karimi-Maleh H (2023) Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv Compos Hybrid Mater 6:68

    Article  CAS  Google Scholar 

  61. Patil SM, Pattar VP, Nandibewoor ST (2016) Simultaneous electrochemical determination of acetaminophen and metoclopramide at electrochemically pre-treated disposable graphite pencil electrode. J Electrochem Sci Eng 6:265–276

    Article  CAS  Google Scholar 

  62. Karimi-Maleh H, Liu Y, Li Z, Darabi R, Orooji Y, Karaman C, Karimi F, Baghayeri M, Rouhi J, Fu L (2023) Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; a bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332:138815

    Article  CAS  PubMed  Google Scholar 

  63. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731

    Article  CAS  Google Scholar 

  64. Shiraishi Y, Kofuji Y, Kanazawa S, Sakamoto H, Ichikawa S, Tanaka S, Hirai T (2014) Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chem Commun 50:15255–15258

    Article  CAS  Google Scholar 

  65. Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1:14766–14772

    Article  CAS  Google Scholar 

  66. Zhang H, Tian W, Zhou L, Sun H, Tade M, Wang S (2018) Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation. Appl Catal B Environ 223:2–9

    Article  CAS  Google Scholar 

  67. Sun Y, Jiang J, Liu Y, Wu S, Zou J (2018) A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones. Appl Surf Sci 430:362–370

    Article  CAS  Google Scholar 

  68. Movlaee K, Beitollahi H, Ganjali MR, Norouzi P (2017) Strategy for simultaneous determination of droxidopa, acetaminophen and tyrosine using carbon paste electrode modified with graphene and ethyl 2-(4-ferrocenyl-[1,2,3] triazol-1-yl) acetate. J ElectroChem Soc 164:H407

    Article  CAS  Google Scholar 

  69. Özdokur KV, Kuşcu C, Ertaş FN (2020) Ultrasound assisted electrochemical deposition of polypyrrole-carbon nanotube composite film: preparation, characterization and application to the determination of droxidopa. Curr Anal Chem 16:421–427

    Article  Google Scholar 

  70. Gupta VK, Sadeghi R, Karimi F (2013) A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples. Sens Actuators B: Chem 186:603–609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Islamic Azad University (Kerman Branch) for its financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Ali Ahmadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S.A., Tajik, S. Efficient Detection of Droxidopa in the Presence of Carbidopa Using a Modified Screen-Printed Graphite Electrode. Top Catal 67, 737–747 (2024). https://doi.org/10.1007/s11244-023-01866-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01866-9

Keywords

Navigation