Skip to main content

Advertisement

Log in

Apigenin-Loaded Stealth Liposomes: Development and Pharmacokinetic Studies for Enhanced Plasma Retention of Drug in Cancer Therapy

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 17 June 2023

This article has been updated

Abstract

Apigenin belongs to the class of compounds known as flavones. It possesses significant antioxidant, anti-inflammatory, and antitumor potential in various preclinical studies. Despite being a potent anticancer molecule, it suffers from significant pharmacokinetic limitations. As per Biopharmaceutical classification system, Apigenin has been categorized as a Class II drug. It has high permeability but low solubility which leads to lower bioavailability. To increase its bioavailability, it has to raise its solubility. Thus, the present work aimed to develop novel Apigenin loaded stealth liposomes to enhance its solubility, plasma residence time and better therapeutic efficacy. Apigenin loaded stealth liposomes (APISL) were prepared by utilizing the ethanol injection technique. The formulation was statistically optimized by DOE and evaluated for particle size, zeta potential, entrapment efficiency, morphology, in-vitro drug release study, in-vivo pharmacokinetic study and stability study. Among all of the preparations, the optimized stealth liposomal batch (APISL-L8) produced the best outcomes, with smallest particle size, the highest percent entrapment efficiency and the highest drug release percent at 48 h. The optimized Apigenin loaded stealth liposomes L8 was found to show higher percent drug release than the plain Apigenin as per Higuchi release model. According to in-vivo experiments, stealth liposomes had a longer exposure period in comparison to pure drug solution. When compared to standard drug, investigations revealed that Apigenin-loaded stealth liposomes demonstrated better plasma retention time and stability. Thus, the result reveals that, the Apigenin-loaded stealth liposome demonstrated an improved bioavailability with enhanced antitumor efficacy in the treatment of breast cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data is available on request.

Change history

References

  1. Cvetanovic A, Svarc-Gajic J, Gasic U, Tesic Z, Zengin G, Zekovic Z, Đurovic S (2017) Isolation of apigenin from subcritical water extracts: optimization of the process. J Supercrit Fluids 120:32–42

    Article  CAS  Google Scholar 

  2. Metselaar J, Mastrobattista E, Storm G (2002) Liposomes for intravenous drug targeting: design and applications. Mini-Rev Med Chem 2:319–329

    Article  CAS  PubMed  Google Scholar 

  3. Salmani JMM, Zhang XP, Jacob JA, Chen BA (2017) Apigenin’s anticancer properties and molecular mechanisms of action: recent advances and future prospectives. Chin J Nat Med 15(5):321–329. https://doi.org/10.1016/S1875-5364(17)30052-3,PMID28558867

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Huang Y, Liu D, Gao Y, Qian S (2013) Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci 48(4–5):740–747

    Article  CAS  PubMed  Google Scholar 

  5. Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. (2022) Polymeric nanoparticles in hybrid catalytic processing and drug delivery system. Top Catal 10:1–25

    Google Scholar 

  6. Mateu-Sanz M, Ginebra MP, Tornín J, Canal C (2022) Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer. Free Radical Biol Med 189:32–41

    Article  CAS  Google Scholar 

  7. Harun-Ur-Rashid M, Foyez T, Jahan I, Pal K, Imran AB (2022) Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: a systematic review. RSC Adv 12(15):9445–9465

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Lin A, Truong B, Pappas A, Kirifides L, Oubarri A, Chen S, Lin S, Dobrynin D, Fridman G, Fridman A, Sang N (2015) Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death tumors and stimulation of macrophages. Plasma Processes Polym 12(12):1392–1399

    Article  CAS  Google Scholar 

  9. Pal K, Asthana N, Aljabali AA, Bhardwaj SK, Kralj S, Penkova A, Thomas S, Zaheer T, Gomes de Souza F (2022) A critical review on multifunctional smart materials ‘nanographene’emerging avenue: nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci 47(5):691–707

    Article  CAS  ADS  Google Scholar 

  10. Alonso-Montemayor FJ, Reyna-Martínez R, Neira-Velázquez MG, Sáenz-Galindo A, Aguilar CN, Narro-Céspedes RI (2021) A review on antibacterial and therapeutic plasma-enhanced activities of natural extracts. J King Saud Univ Sci 33(6):101513

    Article  Google Scholar 

  11. Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L (2021) Nanotechnology-based drug delivery to improve the therapeutic benefits of NRF2 modulators in cancer therapy. Antioxidants 10(5):685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bangale GS, Rajesh KS, Shinde GV (2014) Stealth liposomes: a novel approach of targeted drug delivery in cancer therapy. Int J Pharma Sci Res 5:750–759

    Google Scholar 

  13. Kataria S, Sandhu P, Bilandi AJ, Akanksha M, Kapoor B (2011) Stealth liposomes: a review. Int J Res Ayurveda Pharm 2(5):1534–1538

    CAS  Google Scholar 

  14. Xu M, Wang S, Song YU, Yao J, Huang K, Zhu X (2016) Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 11(5):3075–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang C, Wei YX, Shen MC, Tu YH, Wang CC, Huang HC (2016) Chrysin, abundant in morinda citrifolia fruit water–etoac extracts, combined with apigenin synergistically induced apoptosis and inhibited migration in human breast and liver cancer cells. J Agric Food Chem 64(21):4235–4245

    Article  CAS  PubMed  Google Scholar 

  16. Lee YM, Lee G, Oh TI, Kim BM, Shim DW, Lee KH, Kim YJ, Lim BO, Lim JH (2016) Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. Int J Oncol 48(1):399–408

    Article  CAS  PubMed  Google Scholar 

  17. Zhao G, Han X, Cheng W, Ni J, Zhang Y, Lin J, Song Z (2017) Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol Rep 37(4):2277–2285

    Article  CAS  PubMed  Google Scholar 

  18. Gupta S, Afaq F, Mukhtar H (2002) Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 21(23):3727–3738

    Article  CAS  PubMed  Google Scholar 

  19. Angulo P, Kaushik G, Subramaniam D, Dandawate P, Neville K, Chastain K, Anant S (2017) Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy. J Hematol Oncol 10(1):1–3

    Article  Google Scholar 

  20. Sen K, Banerjee S, Mandal M (2014) Abstract 4594: reversal of Warburg effect by apigenin and 5-fluorouracil loaded dual drug liposomes result in enhanced colorectal chemotherapy. Cancer Res 74(19 Suppl):4594. https://doi.org/10.1158/1538-7445.AM2014-4594

    Article  Google Scholar 

  21. Seo HS, Ku JM, Choi HS, Woo JK, Jang BH, Go H, Shin YC, Ko SG (2015) Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells. Mol Med Rep 12:2977–2984

    Article  CAS  PubMed  Google Scholar 

  22. Huang YB, Tsai YH, Lee SH, Chang JS, Wu PC (2005) Optimization of pH-independent release of nicardipine hydrochloride extended-release matrix tablets using response surface methodology. Int J Pharm 289(1–2):87–95

    Article  CAS  PubMed  Google Scholar 

  23. Kazi M, Alhajri A, Alshehri SM, Elzayat EM, Al Meanazel OT, Shakeel F, Noman O, Altamimi MA, Alanazi FK (2020) Enhancing oral bioavailability of apigenin using a bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS): in vitro, in-vivo and stability evaluations. Pharmaceutics 12:749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. John JB, Lonnie DR (1999) Electron microscopy: principles and techniques for biologists. Jones and Bartlett©, Massachusetts

    Google Scholar 

  25. Imam SS, Gilani SJ, Zafar A, Jumah MN, Ali R, Ahmed MM, Alshehri S (2022) Preparation and optimization of naringin oral nanocarrier: in vitro characterization and antibacterial activity. Coatings 12(9):1230

    Article  CAS  Google Scholar 

  26. Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS (2017) Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in-vivo bioavailability, and antioxidant potential. Eur J Pharm Sci 108:36–49

    Article  CAS  PubMed  Google Scholar 

  27. Wu W, Zu Y, Wang L, Wang L, Wang H, Li Y, Wu M, Zhao X, Fu Y (2017) Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique. Drug deliv 24(1):1713–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen LN, Zhang YT, Wang Q, Xu L, Feng NP (2014) Enhanced in vitro and in-vivo skin deposition of apigenin delivered using ethosomes. Int J Pharm 460(1–2):280–288

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee K, Banerjee S, Mandal M (2017) Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions. J Coll. Interface Sci 491:98–110

    Article  CAS  ADS  Google Scholar 

  30. Shaikh KS, Pawar AP (2010) Liposomal delivery enhances cutaneous availability of ciclopirox olamine. Lat Am J Pharm 2010:29

    Google Scholar 

  31. Krishnam Raju K, Sudhakar B, Murthy KVR (2014) Factorial design studies and biopharmaceutical evaluation of simvastatin loaded solid lipid nanoparticles for improving the oral bioavailability. ISRN Nanotechnol 2014:1–8

    Article  Google Scholar 

  32. Shaikh KS, Chellampillai B, Pawar AP (2016) Studies on nonionic surfactant bilayer vesicles of ciclopirox olamine. Drug Dev Ind Pharm 36(8):946–953

    Article  Google Scholar 

  33. Lledo-Garcia R, Nacher A, Prats-Garcia L, Casabo VG, Merino-Sanjuan M (2007) Bioavailability and pharmacokinetic model for ritonavir in the rat. J Pharm Sci 96(3):633–643

    Article  CAS  PubMed  Google Scholar 

  34. Li VHK, Robinson JR, Lee VHL (1987) Controlled drug delivery: fundamentals and applications, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  35. Hong M, Zhu S, Jiang Y, Tang G, Pei Y (2009) Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Control Rel 133(2):96–102

    Article  CAS  Google Scholar 

  36. Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM (2012) Investigation on the stability of saquinavir loaded liposomes: implication on stealth, release characteristics and cytotoxicity. Int J Pharm 431(1–2):120–129

    Article  CAS  PubMed  Google Scholar 

  37. Gaballah HH, Gaber RA, Mohamed DA (2017) Apigenin potentiates the antitumor activity of 5-FU on solid ehrlich carcinoma: crosstalk between apoptotic and JNK-mediated autophagic cell death platforms. Toxicol Appl Pharmacol 316:27–35

    Article  CAS  PubMed  Google Scholar 

  38. Prabhakar K, Kishan V (2011) Brain delivery of transferrin coupled indinavir submicron lipid emulsions pharmacokinetics and tissue distribution. Coll. Surf B 86(2):305–313

    Article  CAS  Google Scholar 

  39. Karimunnisa S, Atmaram P (2010) Liposomal delivery enhances cutaneous availability of ciclopirox olamine. Lat Am J Pharm 29(5):763–770

    Google Scholar 

  40. Karimunnisa S, Bothiraja C, Atmaram P (2010) Studies on nonionic surfactant bilayer vesicles of ciclopirox olamine. Drug Dev Ind Pharm 36(8):946–953

    Article  Google Scholar 

  41. Sharma P, Garg S (2010) Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev 62:491–502

    Article  CAS  PubMed  Google Scholar 

  42. Shetti P, Jalalpure SS (2022) Optimization of a validated UV-spectrophotometric methodology for assessment of apigenin in bulk powder. IJPER 56(1):281–286

    Article  CAS  Google Scholar 

  43. Ding SM, Zhang ZH, Song J, Cheng XD, Jiang J, Jia XB (2014) Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion. Int J Nanomed 9:2327

    Article  Google Scholar 

  44. Budhraja A, Gao N, Zhang Z, Son YO, Cheng S, Wang X, Ding S, Hitron A, Chen G, Luo J, Shi X (2012) Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in-vivo apigenin induces apoptosis in vitro and in-vivo. Mol Cancer Ther 11(1):132–142

    Article  CAS  PubMed  Google Scholar 

  45. Shetti P, Jalalpure SS (2021) A single robust stability-indicating RP-HPLC analytical tool for apigenin quantification in bulk powder and in nanoliposomes: a novel approach. Future J Pharm Sci 7:122

    Article  Google Scholar 

  46. Alshehri SM, Shakeel F, Ibrahim MA, Elzayat EM, Altamimi M, Mohsin K, Almeanazel OT, Alkholief M, Alshetaili A, Alsulays B, Alanazi FK (2019) Dissolution and bioavailability improvement of bioactive apigenin using solid dispersions prepared by different techniques. Saudi Pharm J 27(2):264–273

    Article  PubMed  Google Scholar 

  47. Banik K, Ranaware AM, Harsha C, Nitesh T, Girisa S, Deshpande V, Fan LU, Nalawade SP, Sethi G, Kunnumakkara AB (2020) Piceatannol: a natural stilbene for the prevention and treatment of cancer. Pharm Res 153:104635

    Article  CAS  Google Scholar 

  48. Ahmed G, Omar SSR, Maha N, Omaima S (2021) Ethanol injection technique for liposomes formulation: an insight into development, influencing factors, challenges and applications. J Drug Deliv Sci Technol 61:102174

    Article  Google Scholar 

  49. Xin Y, Yin M, Zhao L, Meng F, Luo L (2017) Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 14(3):228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:1521–1532

    Article  CAS  PubMed  Google Scholar 

  51. Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H (2019) The therapeutic potential of apigenin. Int J Mol Sci 20(6):1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Indoria S, Singh V, Hsieh M-F (2020) Recent advances in theranostic polymeric nanoparticles for cancer treatment: areview. Int J Pharm 582:119314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Aktin chemicals, China for providing the drug bas gift sample. Authors are also thankful to KAHER’s BSRC, Belagavi for providing the facility.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

PPS contributed for experimental work and manuscript preparation, SSJ contributed in hypothesis and finalization of manuscript. ASP worked on DOE software and in compilation of data. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Sunil S. Jalalpure.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

This study involved animals and ethical approval was obtained by the Institutional Animal Ethical Committee – Reg.No221/Po/Re/S/2000/CPCSEA.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetti, P., Jalalpure, S.S., Patil, A.S. et al. Apigenin-Loaded Stealth Liposomes: Development and Pharmacokinetic Studies for Enhanced Plasma Retention of Drug in Cancer Therapy. Top Catal 67, 46–58 (2024). https://doi.org/10.1007/s11244-023-01818-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01818-3

Keywords

Navigation