Skip to main content

Advertisement

Log in

Plasmonic-Based TiO2 and TiO2 Nanoparticles for Photocatalytic CO2 to Methanol Conversion in Energy Applications: Current Status and Future Prospects

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Burning hydrocarbon fuels at ever-increasing rates and producing huge amounts of carbon dioxide emissions are the root causes of the global energy problem and climate change. The transformation of CO2 into other forms of energy, such as CO, CH4, and CH3OH, is one potential approach to the complex problems of environmental pollution, climate change, and global warming. Methanol is one of these goods that is one of the most significant and highly adaptable chemicals regularly used in industry and daily life. Methanol is one of the most important and widely used chemicals. Photocatalysis answers the present problems facing the environment and the energy sector. This article explores recent developments in the photocatalytic conversion of CO2 to CH3OH using catalysts based on plasmonic TiO2 and TiO2 nanomaterial. The process involves converting carbon dioxide into methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from reference [40]. Copyright 2015, Royal Society of Chemistry

Fig. 2

Copyright 2020, Royal Society of Chemistry

Fig. 3

Reproduced with permission from reference [36]. Copyright 2011, Wiley

Fig. 4
Fig. 5

Reproduced with permission from reference [101]. Copyright 2019, MDPI. Open access under a CC BY 4.0 license

Fig. 6

Reproduced with permission from reference [105]. Copyright 2019, Elsevier

Fig. 7

Reproduced with permission from reference [105]. Copyright 2019, Elsevier

Fig. 8

Reproduced with permission from reference [107]. Copyright 2019, Elsevier

Fig. 9

Reproduced with permission from reference [108]. Copyright 2021, Elsevier

Fig. 10

Reproduced with permission from reference [113]. Copyright 2019, Elsevier

Fig. 11

Reproduced with permission from reference [114]. Copyright 2021, Elsevier. Open access under a CC BY 4.0 license

Fig. 12

Reproduced with permission from reference [114]. Copyright 2021, Elsevier. Open access under a CC BY 4.0 license

Fig. 13

Reproduced with permission from reference [117]. Copyright 2020, Elsevier

Similar content being viewed by others

References

  1. Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443

    Article  CAS  Google Scholar 

  2. Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi G, Jones CW (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130(10):2902–2903

    Article  CAS  PubMed  Google Scholar 

  3. Ritter SK (2007) What can we do with CO? Chem Eng News Arch 85(18):11–17

    Article  Google Scholar 

  4. Robinson AB, Robinson NE, Soon W (2007) Environmental Effects of increased atmospheric carbon dioxide. J Am Physicians Surg 12:79–90

    Google Scholar 

  5. Dinger A et al. (2017) Batteries for electric cars: Challenges, opportunities, and the outlook to 2020. The Boston Consulting Group. Vol 7

  6. Moniz EJ (2010) Nanotechnology for the energy challenge. Wiley, Hoboken

    Google Scholar 

  7. Budzianowski WM (2012) Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs. Renew Sustain Energy Rev 16(9):6507–6521

    Article  Google Scholar 

  8. Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenh Gases: Sci Technol 1(1):21–35

    Article  CAS  Google Scholar 

  9. Peters M, Mueller T, Leitner W (2009) CO2: From waste to value. Chem Eng 813:46–47

    CAS  Google Scholar 

  10. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley, Hoboken

    Book  Google Scholar 

  11. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: Opportunities and challenges. Dalton Trans 28:2975–2992

    Article  Google Scholar 

  12. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205

    Article  CAS  Google Scholar 

  13. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernández JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS (2014) Carbon capture and storage update. Energy Environ Sci 7(1):130–189

    Article  CAS  Google Scholar 

  14. Styring P, Jansen D, De Coninck H, Reith H, Armstrong K. Carbon capture and utilisation in the green economy. Centre for Low Carbon Futures. Retrieved from URL: http://co2chem.co.uk/wp-content/uploads/2012/06/CCU%20in%20the%20green%20economy%20report.pdf.2011Jul

  15. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy environ sci 5(6):7281–7305

    Article  CAS  Google Scholar 

  16. Jarvis SM, Samsatli S (2018) Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis. Renew Sust Energ Rev 85:46–68

    Article  CAS  Google Scholar 

  17. Nath N (2020) Conversion of CO2 to high value products. In: Advanced catalysis processes in petrochemicals and petroleum refining: emerging research and opportunities. IGI Global, pp 48–95

  18. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325

    Article  CAS  Google Scholar 

  19. Kaur J, Sharma I, Zangrando E, Pal K, Mehta SK, Kataria R (2023) Fabrication of novel copper MOF nanoparticles for nanozymatic detection of mercury ions. J Mater Res Technol 22:278–291

    Article  Google Scholar 

  20. Pal K, Chakroborty S, Panda P, Nath N, Soren S (2022) Environmental assessment of wastewater management via hybrid nanocomposite matrix implications—an organized review. Environ Sci Pollut Res 29(51):76626–76643

    Article  CAS  Google Scholar 

  21. Pal K, Asthana N, Aljabali AA, Bhardwaj SK, Kralj S, Penkova A, Thomas S, Zaheer T, Gomes de Souza F (2022) A critical review on multifunctional smart materials’ nanographene’emerging avenue: Nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci 47(5):691–707

    Article  CAS  ADS  Google Scholar 

  22. Pal K, Si A, El-Sayyad GS, Elkodous MA, Kumar R, El-Batal AI, Kralj S, Thomas S (2021) Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit Rev Solid State Mater Sci 46(5):385–449

    Article  CAS  ADS  Google Scholar 

  23. Nath N, Chakroborty S, Panda P, Pal K (2022) High yield silica-based emerging nanoparticles activities for hybrid catalyst applications. Top Catal 65(19–20):1706–1718

    Article  CAS  Google Scholar 

  24. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Sang L, Zhao Y, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem rev 114(19):9283–9318

    Article  CAS  PubMed  Google Scholar 

  26. Zhu S, Zheng J, Xin S, Nie L (2022) Preparation of flexible Pt/TiO2/γ-Al2O3 nanofiber paper for room-temperature HCHO oxidation and particulate filtration. Chem Eng J 427:130951

    Article  CAS  Google Scholar 

  27. Balarabe BY, Maity P (2022) Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf A: Physicochem Eng Asp 655:130247

    Article  CAS  Google Scholar 

  28. Li M, Wang Y, Fan Y, Liao L, Zhou X, Mo S, Wang H (2022) Controllable synthesis various morphologies of 3D hierarchical MnOx-TiO2 nanocatalysts for photothermocatalysis toluene and NO with free-ammonia. J Colloid Interface Sci 608:3004–3012

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. Chemsuschem 4:1216–1240

    Article  CAS  PubMed  Google Scholar 

  30. Mittasch A, Pier M (1926) Synthetic manufacture of methanol. US Patent 1,569,775

  31. Davies P, Snowdon FF, Bridger GW, Hughes DO, Young PW, T.Gallagher J, Kidd J M (1966) British patent UK Patent 1010871, 1159035 to ICI Ltd.

  32. Bridger GW, Spencer MS (1989) Catalyst handbook, 2nd edn. Wolfe Publishing, London

    Google Scholar 

  33. Global Demand of Methanol By Products (2015) NGI, Natural Gas Inte. http://www.naturalgasintel.com/articles/5062-valero-looks-to-build-mega-methanol-plantfueled-by-shale. At 26th of Oct. 2015

  34. McGrath KM, Prakash GKS, Olah GA (2004) Direct methanol fuel cells. J Ind Eng Chem 10(7):1063–1080

    CAS  Google Scholar 

  35. MI. Methanol Institute. (2013) The methanol industry http://www.methanol.org/Methanol-Basics.aspx

  36. Olah GA, Goeppert A, Prakash GKS (2011) Beyond oil and gas: The methanol economy. Wiley, Hoboken

    Google Scholar 

  37. Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898

    Article  CAS  PubMed  Google Scholar 

  38. Olah GA, Goeppert A, Prakash GS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J org chem 74(2):487–498

    Article  CAS  PubMed  Google Scholar 

  39. Olah GA, Goeppert A, Prakash GS (2018) Beyond oil and gas: the methanol economy. John Wiley & Sons

    Book  Google Scholar 

  40. Albo J, Alvarez-Guerra M, Castaño P, Irabien A (2015) Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem 17(4):2304–2324

    Article  CAS  Google Scholar 

  41. Carbon Recycling International (CRI), (2016) World's largest CO2 methanol plant. http://carbonrecycling.is/george-olah/2016/2/14/worlds-largest-co2-methanol-plant

  42. Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy environ sci 6(11):3112–3135

    Article  CAS  Google Scholar 

  43. Lan Y, Lu Y, Ren Z (2013) Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2(5):1031–1045

    Article  CAS  Google Scholar 

  44. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Xia T, Long R, Gao C, Xiong Y (2019) Design of atomically dispersed catalytic sites for photocatalytic CO2 reduction. Nanoscale 11(23):11064–11070

    Article  CAS  PubMed  Google Scholar 

  46. Lingampalli SR, Ayyub MM, Rao CN (2017) Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2(6):2740–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hong J, Zhang W, Ren J, Xu R (2013) Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal methods 5(5):1086–1097

    Article  CAS  Google Scholar 

  48. Kalamaras E, Maroto-Valer MM, Shao M, Xuan J, Wang H (2018) Solar carbon fuel via photoelectrochemistry. Catal Today 317:56–75

    Article  CAS  Google Scholar 

  49. Sivula K, Van De Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1(2):1–6

    Article  Google Scholar 

  50. Castro S, Albo J, Irabien A (2018) ACS Sustainable Chem Eng 6:15877–15894

    Article  CAS  Google Scholar 

  51. Pawar AU, Kim CW, Nguyen-Le MT, Kang YS (2019) General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis. ACS Sustain Chem Eng 7(8):7431–7455

    Article  CAS  Google Scholar 

  52. Taniguchi I, Aurian-Blajeni B (1984) The reduction of carbon dioxide at illuminated p-type semiconductor electrodes in nonaqueous media. Electrochim Acta 29:923–932

    Article  CAS  Google Scholar 

  53. Gennaro A, Isse AA, Vianello E (1990) Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents. J Electroanal Chem Interfacial Electrochem 289:203–215

    Article  CAS  Google Scholar 

  54. Taniguchi I (1989) Electrochemical and photochemical reduction of carbon dioxide. In: White JO, Conway BE (eds) Modern aspects of electrochemistry, vol 20. Plenum, New York, pp 327–400

    Google Scholar 

  55. Tomita Y, Hori Y (1998) Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile-water mixtures. Stud Surf Sci Catal 114:581–584

    Article  CAS  Google Scholar 

  56. Patial S, Kumar R, Raizada P, Singh P, Van Le Q, Lichtfouse E, Nguyen DL, Nguyen VH (2021) Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environ Res 197:111134

    Article  CAS  PubMed  Google Scholar 

  57. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  58. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  PubMed  Google Scholar 

  59. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  PubMed  Google Scholar 

  60. Zhong M, Sato Y, Kurniawan M, Apostoluk A, Masenelli B, Maeda E, Ikuhara Y, Delaunay JJ (2012) ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications. Nanotechnology 23(49):495602

    Article  PubMed  Google Scholar 

  61. Ohtani B (2008) Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37(3):216–229

    Article  Google Scholar 

  62. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580

    Article  CAS  PubMed  Google Scholar 

  63. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Cheml Rev 95(3):735–758

    Article  CAS  Google Scholar 

  64. Asahi RY, Morikawa TA, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  CAS  PubMed  Google Scholar 

  65. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12R):8269

    Article  CAS  ADS  Google Scholar 

  66. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939

    Article  CAS  Google Scholar 

  67. Han F, Kambala VS, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359(1–2):25–40

    Article  CAS  Google Scholar 

  68. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  CAS  ADS  Google Scholar 

  69. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  70. Nozik AJ, Memming R (1996) Physical chemistry of semiconductor− liquid interfaces. J Phys Chem 100(31):13061–13078

    Article  CAS  Google Scholar 

  71. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  CAS  ADS  Google Scholar 

  72. Wold A (1993) Photocatalytic properties of titanium dioxide (TiO2). Chem Mater 5(3):280–283

    Article  CAS  Google Scholar 

  73. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–4

    Article  CAS  Google Scholar 

  74. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Article  CAS  Google Scholar 

  75. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Met 28(1):1–50

    Article  CAS  Google Scholar 

  76. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21

    Article  CAS  Google Scholar 

  77. Grätzel M (1999) Curr Opinion Colloid Interface Sci 4(4):314–321

    Article  Google Scholar 

  78. Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  PubMed  ADS  Google Scholar 

  79. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    Article  CAS  Google Scholar 

  80. Heller A (1995) Chemistry and applications of photocatalytic oxidation of thin organic films. Acc Chem Res 28(12):503–508

    Article  CAS  Google Scholar 

  81. Kočí K, Obalová L, Lacný Z (2008) Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem Pap 62(1):1–9

    Article  Google Scholar 

  82. Wu W, Liang S, Chen Y, Shen L, Yuan R, Wu L (2013) Mechanism and improvement of the visible light photocatalysis of organic pollutants over microcrystalline AgNbO3 prepared by a sol–gel method. Mater Res Bull 48(4):1618–1626

    Article  CAS  Google Scholar 

  83. Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041

    Article  CAS  PubMed  Google Scholar 

  84. Jiang W, Bai S, Wang L, Wang X, Yang L, Li Y, Liu D, Wang X, Li Z, Jiang J, Xiong Y (2016) Integration of multiple plasmonic and cocatalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small 12(12):1640–1648

    Article  CAS  PubMed  Google Scholar 

  85. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660

    Article  Google Scholar 

  86. Zada A, Muhammad P, Ahmad W, Hussain Z, Ali S, Khan M, Khan Q, Maqbool M (2020) Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv Funct Mater 30(7):1906744

    Article  CAS  Google Scholar 

  87. Wang P, Huang B, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14(28):9813–9825

    Article  CAS  PubMed  Google Scholar 

  88. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 8(2):95–103

    Article  CAS  ADS  Google Scholar 

  89. Liu C, Dong H, Wu N, Cao Y, Zhang X (2018) Plasmonic resonance energy transfer enhanced photodynamic therapy with Au@ SiO2@ Cu2O/perfluorohexane nanocomposites. ACS Appl Mater Interfaces 10(8):6991–7002

    Article  CAS  PubMed  Google Scholar 

  90. Liu X, Zhang Y, Liang A, Ding H, Gai H (2019) Plasmonic resonance energy transfer from a Au nanosphere to quantum dots at a single particle level and its homogenous immunoassay. Chem Commun 55(76):11442–11445

    Article  CAS  Google Scholar 

  91. Abdullah H, Khan MM, Ong HR, Yaakob Z (2017) Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview. J CO2 Util 22:15–32

    Article  CAS  Google Scholar 

  92. Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M (2018) A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J CO2 Util 26:98–122

    Article  CAS  Google Scholar 

  93. Tahir M, Tahir B, Amin NA (2015) Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. Appl Surf Sci 356:1289–1299

    Article  CAS  ADS  Google Scholar 

  94. Liu E, Fan J, Hu X, Hu Y, Li H, Tang C, Sun L, Wan J (2015) A facile strategy to fabricate plasmonic Au/TiO 2 nano-grass films with overlapping visible light-harvesting structures for H 2 production from water. J Mater Sci 50:2298–2305

    Article  CAS  ADS  Google Scholar 

  95. Liu E, Qi L, Bian J, Chen Y, Hu X, Fan J, Liu H, Zhu C, Wang Q (2015) A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol. Mater Res Bull 68:203–209

    Article  CAS  Google Scholar 

  96. Tahir M, Tahir B, Amin NA, Alias H (2016) Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst. Appl Surf Sci 389:46–55

    Article  CAS  ADS  Google Scholar 

  97. Yu B, Zhou Y, Li P, Tu W, Li P, Tang L, Ye J, Zou Z (2016) Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 8(23):11870–11874

    Article  CAS  PubMed  ADS  Google Scholar 

  98. Mgolombane M, Bankole OM, Ferg EE, Ogunlaja AS (2021) Construction of Co-doped TiO2/rGO nanocomposites for high-performance photoreduction of CO2 with H2O: comparison of theoretical binding energies and exploration of surface chemistry. Mater Chem Phys 268:124733

    Article  CAS  Google Scholar 

  99. Zhu B, Xia P, Ho W, Yu J (2015) Isoelectric point and adsorption activity of porous g-C3N4. Appl Surf Sci 344:188–195

    Article  CAS  ADS  Google Scholar 

  100. Tang H, Chang S, Jiang L, Tang G, Liang W (2016) Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Ceram Int 42:18443–18452

    Article  CAS  Google Scholar 

  101. Tseng IH, Sung YM, Chang PY, Chen CY (2019) Anatase TiO2-decorated graphitic carbon nitride for photocatalytic conversion of carbon dioxide. Polymers 11(1):146

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chen D, Zou L, Li S, Zheng F (2016) Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci rep 6(1):20335

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Wang W, Wang Z, Liu J, Luo Z, Suib SL, He P, Ding G, Zhang Z, Sun L (2017) Single-step one-pot synthesis of TiO2 nanosheets doped with sulfur on reduced graphene oxide with enhanced photocatalytic activity. Sci rep 7(1):1–9

    PubMed  PubMed Central  ADS  Google Scholar 

  104. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat mater 10(12):911–921

    Article  CAS  PubMed  ADS  Google Scholar 

  105. Olowoyo JO, Kumar M, Singh B, Oninla VO, Babalola JO, Valdés H, Vorontsov AV, Kumar U (2019) Self-assembled reduced graphene oxide-TiO2 nanocomposites: synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO2 to methanol. Carbon 147:385–397

    Article  CAS  Google Scholar 

  106. Wang AX, Kong X (2015) Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials 8(6):3024–3052

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Almomani F, Bhosale R, Khraisheh M, Kumar A, Tawalbeh M (2019) Photocatalytic conversion of CO2 and H2O to useful fuels by nanostructured composite catalysis. Appl Surf Sci 483:363–372

    Article  CAS  ADS  Google Scholar 

  108. Cheng M, Bai S, Xia Y, Zhu X, Chen R, Liao Q (2021) Highly efficient photocatalytic conversion of gas phase CO2 by TiO2 nanotube array sensitized with CdS/ZnS quantum dots under visible light. Int J Hydrog Energy 46(62):31634–31646

    Article  CAS  Google Scholar 

  109. Yang X, Chen H, Meng Q, Zheng H, Zhu Y, Li YW (2017) Insights into influence of nanoparticle size and metal–support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation. Catal Sci Technol 7(23):5625–34

    Article  CAS  Google Scholar 

  110. An B, Zhang J, Cheng K, Ji P, Wang C, Lin W (2017) Confinement of ultrasmall cu/zno x nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139(10):3834–3840

    Article  CAS  PubMed  Google Scholar 

  111. Wei Z, Rosa L, Wang K, Endo M, Juodkazis S, Ohtani B, Kowalska E (2017) Size-controlled gold nanoparticles on octahedral anatase particles as efficient plasmonic photocatalyst. Appl Catal B Environ 206:393–405

    Article  CAS  Google Scholar 

  112. Wei Z, Janczarek M, Endo M, Colbeau-Justin C, Ohtani B, Kowalska E (2018) Silver-modified octahedral anatase particles as plasmonic photocatalyst. Catal Today 310:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang ZJ, Song H, Pang H, Ning Y, Dao TD, Wang Z, Chen H, Weng Y, Fu Q, Nagao T, Fang Y (2019) Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl Catal B: Environ 250:10–16

    Article  CAS  Google Scholar 

  114. Angulo-Ibáñez A, Goitandia AM, Albo J, Aranzabe E, Beobide G, Castillo O, Pérez-Yáñez S (2021) Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion. Iscience 24(6):102654

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  115. Otgonbayar Z, Liu Y, Cho KY, Jung CH, Oh WC (2021) Novel ternary composite of LaYAgO4 and TiO2 united with graphene and its complement: Photocatalytic performance of CO2 reduction into methanol. Mater Sci Semicond Process 121:105456

    Article  CAS  Google Scholar 

  116. Bharath G, Prakash J, Rambabu K, Venkatasubbu GD, Kumar A, Lee S, Theerthagiri J, Choi MY, Banat F (2021) Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO2 to methanol toward the removal of an organic pollutant from the atmosphere. Environ Pollut 281:116990

    Article  CAS  PubMed  Google Scholar 

  117. Tahir M (2020) Well-designed ZnFe2O4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light. J CO2 Util 37:134–46

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhendu Chakroborty or Arundhati Barik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakroborty, S., Nath, N., Soren, S. et al. Plasmonic-Based TiO2 and TiO2 Nanoparticles for Photocatalytic CO2 to Methanol Conversion in Energy Applications: Current Status and Future Prospects. Top Catal 67, 232–245 (2024). https://doi.org/10.1007/s11244-023-01816-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01816-5

Keywords

Navigation