Skip to main content

Advertisement

Log in

Biocatalytic Degradation of Emerging Micropollutants

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Water pollution caused by micropollutants (MPs) raises significant toxicological concerns, especially when present in complex mixtures. A major obstacle to producing high-quality water from wastewater is the presence of MPs (such as pharmaceutical, and personal care products, endocrine-disrupting contaminants, industrial chemicals, and pesticides), which are biologically active in trace amounts. Aquatic environments are frequently contaminated with MPs that are associated with high levels of ecotoxicological risks, which has been an issue of great concern over the past few years. MPs are minor components of dissolved organic matter (DOM), but their persistence, toxicity, and bioaccumulation characteristics severely disrupt water systems. Biological treatment has attracted enormous interest around the world due to its low cost and environmental friendliness. Although biological treatment methods are relatively inexpensive, the large variety of organic MPs found in wastewater cannot be degraded by current techniques. As indicated by the growing number of papers highlighting their potential damage to the environment and human health, the build-up of emerging contaminants (ECs) in the environment continues to be a serious concern. The metabolic conversion of compounds into new chemicals for commercial use is known as biocatalysis. Microbial enzymes, particularly immobilized biocatalysts, have been shown to provide a flexible alternative to physical and chemical approaches for the long-term reduction of environmental pollution. Environmental sustainability and ecological integrity are seriously threatened by the release of an astonishing quantity of refractory pollutants from numerous industrial activities. The strategies that could be used to create biological wastewater treatment systems that can break down organic MPs are discussed in this paper. In this review, we discuss the toxicity of MPs products and their remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MPs:

Micropollutants

PAHs:

Polycyclic aromatic hydrocarbons

PCBs:

Polychlorinated biphenyls

PFASs:

Poly-fluoroalkyl substances

POPs:

Persistent organic pollutants

HMs:

Heavy metals

LMW-PAHs:

Low molecular weight PAHs

HMW-PAHs:

High molecular weight PAHs

MOB:

Manganese oxidizing bacteria

RHD:

Ring-hydroxylating dioxygenase

References

  1. Bertucci A, Hoede C, Dassié E, Gourves PY, Suin A, Le Menach K, Budzinski H, Daverat F (2022) Impact of environmental micropollutants and diet composition on the gut microbiota of wild European eels (Anguilla anguilla). Environ Pollut 314:120207

    Article  CAS  PubMed  Google Scholar 

  2. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    Article  CAS  PubMed  Google Scholar 

  3. Gul B, Naseem MK, Malik WUN, Gurmani AR, Mehmood A, Rafique M (2022) Environmental micropollutants and their impact on human health with special focus on agriculture. Hazardous environmental micro-pollutants health impacts and allied treatment technologies. Springer, Cham

    Google Scholar 

  4. Zhuang S, Chen R, Liu Y, Wang J (2020) Magnetic COFs for the adsorptive removal of diclofenac and sulfamethazine from aqueous solution: adsorption kinetics, isotherms study and DFT calculation. J Hazard Mater 385:121596

    Article  CAS  PubMed  Google Scholar 

  5. Gerbersdorf SU, Cimatoribus C, Class H, Engesser KH, Helbich S, Hollert H, Lange C, Kranert M, Metzger J, Nowak W, Seiler TB (2015) Anthropogenic Trace Compounds (ATCs) in aquatic habitats—Research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. Environ Int 79:85–105

    Article  CAS  PubMed  Google Scholar 

  6. Van den Brink PJ, Boxall AB, Maltby L, Brooks BW, Rudd MA, Backhaus T, Spurgeon D, Verougstraete V, Ajao C, Ankley GT, Apitz SE (2018) Toward sustainable environmental quality: priority research questions for Europe. Environ Toxicol Chem 37(9):2281–2295

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buning B, Rechtenbach D, Behrendt J, Otterpohl R (2021) Removal of emerging micropollutants from wastewater by nanofiltration and biofilm reactor (MicroStop). Environ Prog Sustainable Energy 40(3):e13587

    Article  Google Scholar 

  8. Barbosa MO, Moreira NF, Ribeiro AR, Pereira MF, Silva AM (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279

    Article  CAS  PubMed  Google Scholar 

  9. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641

    Article  PubMed  Google Scholar 

  10. Shao Y, Chen Z, Hollert H, Zhou S, Deutschmann B, Seiler TB (2019) Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment. Sci Total Environ 666:1273–1282

    Article  CAS  PubMed  Google Scholar 

  11. Braunbeck, T. and Lammer, E., 2005. Draft detailed review paper on fish embryo toxicity assays. Aquatic Ecology & Toxicology, Department of Zoology, Univ.

  12. Schiwy S, Bräunig J, Alert H, Hollert H, Keiter SH (2015) A novel contact assay for testing aryl hydrocarbon receptor (AhR)-mediated toxicity of chemicals and whole sediments in zebrafish (Danio rerio) embryos. Environ Sci Pollut Res 22(21):16305–16318

    Article  CAS  Google Scholar 

  13. Bhatt P, Bhandari G, Bilal M (2022) Occurrence, toxicity impacts and mitigation of emerging micropollutants in the aquatic environments: recent tendencies and perspectives. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.107598

    Article  Google Scholar 

  14. Morsi R, Bilal M, Iqbal HM, Ashraf SS (2020) Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ 714:136572

    Article  CAS  PubMed  Google Scholar 

  15. Yuan K, Qing Q, Wang Y, Lin F, Chen B, Luan T, Wang X (2020) Characteristics of chlorinated and brominated polycyclic aromatic hydrocarbons in the Pearl River Estuary. Sci Total Environ 739:139774

    Article  CAS  PubMed  Google Scholar 

  16. Zhang XP, Zhang YY, Mai L, Liu LY, Bao LJ, Zeng EY (2020) Selected antibiotics and current-use pesticides in riverine runoff of an urbanized river system in association with anthropogenic stresses. Sci Total Environ 739:140004

    Article  CAS  PubMed  Google Scholar 

  17. Starling MCV, Amorim CC, Leão MMD (2019) Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. J Hazard Mater 372:17–36

    Article  CAS  PubMed  Google Scholar 

  18. Han N, Reinhard M, Khan E, Chen H, Tung V, Li Y (2019) Environment emerging contaminants in wastewater, stormwater runoff, and surface water: application as chemical markers for diffuse sources. Sci Total Environ 676:252–267

    Article  Google Scholar 

  19. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35(5):803–814

    Article  CAS  PubMed  Google Scholar 

  20. Gogoi A, Mazumder P, Tyagi VK, Chaminda GT, An AK, Kumar M (2018) Occurrence and fate of emerging contaminants in water environment: a review. Groundw Sustain Dev 6:169–180

    Article  Google Scholar 

  21. Wei X, Wang Y, Chen J, Xu F, Liu Z, He X, Li H, Zhou Y (2020) Adsorption of pharmaceuticals and personal care products by deep eutectic solvents-regulated magnetic metal-organic framework adsorbents: performance and mechanism. Chem Eng J 392:124808

    Article  CAS  Google Scholar 

  22. Priyan VV, Shahnaz T, Suganya E, Sivaprakasam S, Narayanasamy S (2021) Ecotoxicological assessment of micropollutant Diclofenac biosorption on magnetic sawdust: Phyto, Microbial and Fish toxicity studies. J Hazard Mater 403:123532

    Article  Google Scholar 

  23. Gorito AM, Ribeiro AR, Almeida CMR, Silva AM (2017) A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ Pollut 227:428–443

    Article  CAS  PubMed  Google Scholar 

  24. Careghini A, Mastorgio AF, Saponaro S, Sezenna E (2015) Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res 22(8):5711–5741

    Article  CAS  Google Scholar 

  25. Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar MS (2022) Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. Chemosphere 287:132216

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Q, Zhao X, Cao J (2020) Advanced nanomaterials for degrading persistent organic pollutants. Advanced nanomaterials for pollutant sensing and environmental catalysis. Elsevier, Amsterdam, pp 249–305

    Chapter  Google Scholar 

  27. Zhao WW, Zhu G, Daugulis AJ, Chen Q, Ma HY, Zheng P, Liang J, Ma XK (2020) Removal and biomineralization of Pb2+ in water by fungus Phanerochaete chrysoporium. J Clean Prod 260:120980

    Article  CAS  Google Scholar 

  28. Ribeiro RS, Vieira O, Fernandes R, Roman FF, de Tuesta JLD, Silva AM, Gomes HT (2022) Synthesis of low-density polyethylene derived carbon nanotubes for activation of persulfate and degradation of water organic micropollutants in continuous mode. J Environ Manage 308:114622

    Article  CAS  PubMed  Google Scholar 

  29. Groffen T, Rijnders J, van Doorn L, Jorissen C, De Borger SM, Luttikhuis DO, de Deyn L, Covaci A, Bervoets L (2021) Preliminary study on the distribution of metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), in the aquatic environment near Morogoro, Tanzania, and the potential health risks for humans. Environ Res 192:110299

    Article  CAS  PubMed  Google Scholar 

  30. Pujari M, Kapoor D (2021) Heavy metals in the ecosystem: sources and their effects. Heavy metals in the environment. Elsevier, Amsterdam, pp 1–7

    Google Scholar 

  31. Debnath B, Singh WS, Manna K (2019) Sources and toxicological effects of lead on human health. Indian J Med 10(2):66

    Google Scholar 

  32. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. https://doi.org/10.1155/2019/6730305

    Article  Google Scholar 

  33. Lee GH, Choi KC (2020) Adverse effects of pesticides on the functions of immune system. Comp Biochem Physiol C 235:108789

    CAS  Google Scholar 

  34. Hernández AF, Bennekou SH, Hart A, Mohimont L, Wolterink G (2020) Mechanisms underlying disruptive effects of pesticides on the thyroid function. Curr Opin Toxicol 19:34–41

    Article  Google Scholar 

  35. Cilluffo G, Ferrante G, Murgia N, Mancini R, Pichini S, Cuffari G, Giudice V, Tirone N, Malizia V, Montalbano L, Fasola S (2022) Effects of polycyclic aromatic hydrocarbons on lung function in children with asthma: a mediation analysis. Int J Environ Res Public Health 19(3):1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adebusuyi AT, Sojinu SO, Aleshinloye AO (2022) The prevalence of persistent organic pollutants (POPs) in West Africa–A review. Environ Chall. https://doi.org/10.1016/j.envc.2022.100486

    Article  Google Scholar 

  37. Galal TM, Hassan LM, Ahmed DA, Alamri SA, Alrumman SA, Eid EM (2021) Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. PLoS ONE 16(6):e0252229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goyal, D., Yadav, A., Prasad, M., Singh, T.B., Shrivastav, P., Ali, A., Dantu, P.K. and Mishra, S., 2020. Effect of heavy metals on plant growth: an overview. Contaminants in agriculture, pp.79–101.

  39. Jiang HH, Cai LM, Wen HH, Hu GC, Chen LG, Luo J (2020) An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci Total Environ 701:134466

    Article  CAS  PubMed  Google Scholar 

  40. Ibeto CN, Okoye COB (2010) High levels of Heavy metals in Blood of Urban population in Nigeria. Res J Environ Sci 4(4):371–382

    Article  CAS  Google Scholar 

  41. Shahsavari E, Schwarz A, Aburto-Medina A, Ball AS (2019) Biological degradation of polycyclic aromatic compounds (PAHs) in soil: a current perspective. Curr Pollut Rep 5(3):84–92

    Article  CAS  Google Scholar 

  42. Zhou L, Li H, Zhang Y, Han S, Xu H (2016) Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities. Brazil J Microbiol 47(1):271–278

    Article  CAS  Google Scholar 

  43. Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M (2019) Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria. Chemosphere 222:132–140

    Article  CAS  PubMed  Google Scholar 

  44. Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M (2019) Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: overexpression of amidohydrolase induced by pyrene and BaP. Sci Total Environ 651:813–821

    Article  CAS  PubMed  Google Scholar 

  45. Ping L, Zhang C, Zhang C, Zhu Y, He H, Wu M, Tang T, Li Z, Zhao H (2014) Isolation and characterization of pyrene and benzo [a] pyrene-degrading Klebsiella pneumonia PL1 and its potential use in bioremediation. Appl Microbiol Biotechnol 98(8):3819–3828

    Article  CAS  PubMed  Google Scholar 

  46. Mishra S, Singh SN (2014) Biodegradation of benzo (a) pyrene mediated by catabolic enzymes of bacteria. Int J Environ Sci Technol 11(6):1571–1580

    Article  CAS  Google Scholar 

  47. Guntupalli S, Thunuguntla VBSC, Santha Reddy INM, Rao CV, B.J., (2016) Enhanced degradation of carcinogenic PAHs benzo (a) pyrene and benzo (k) fluoranthene by a microbial consortia. Indian J Sci Technol 9:35

    Article  Google Scholar 

  48. Mangwani N, Kumari S, Das S (2021) Taxonomy and characterization of biofilm forming polycyclic aromatic hydrocarbon degrading bacteria from marine environments. Polycyclic Aromat Compd 41(6):1249–1262

    Article  CAS  Google Scholar 

  49. Mohanrasu K, Premnath N, Prakash GS, Sudhakar M, Boobalan T, Arun A (2018) Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. J Photochem Photobiol, B 185:55–65

    Article  CAS  PubMed  Google Scholar 

  50. Shukla SK, Mangwani N, Rao TS (2019) Bioremediation approaches for persistent organic pollutants using microbial biofilms. Microb Biofilms Bioremed Wastewater Treat 179:179–206

    Article  Google Scholar 

  51. Zhang Y, Wang F, Yang X, Gu C, Kengara FO, Hong Q, Lv Z, Jiang X (2011) Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation. Appl Microbiol Biotechnol 90(3):1063–1071

    Article  CAS  PubMed  Google Scholar 

  52. Dutta K, Shityakov S, Khalifa I, Mal A, Moulik SP, Panda AK, Ghosh C (2018) Effects of secondary carbon supplement on biofilm-mediated biodegradation of naphthalene by mutated naphthalene 1, 2-dioxygenase encoded by Pseudomonas putida strain KD9. J Hazard Mater 357:187–197

    Article  CAS  PubMed  Google Scholar 

  53. Isaac P, Alessandrello MJ, Macedo AJ, Estévez MC, Ferrero MA (2017) Pre-exposition to polycyclic aromatic hydrocarbons (PAHs) enhance biofilm formation and hydrocarbon removal by native multi-species consortium. J Environ Chem Eng 5(2):1372–1378

    Article  CAS  Google Scholar 

  54. Premnath N, Mohanrasu K, Rao RGR, Dinesh GH, Prakash GS, Pugazhendhi A, Jeyakanthan J, Govarthanan M, Kumar P, Arun A (2021) Effect of C/N substrates for enhanced extracellular polymeric substances (EPS) production and Poly Cyclic Aromatic Hydrocarbons (PAHs) degradation. Environ Pollut 275:116035

    Article  CAS  PubMed  Google Scholar 

  55. Premnath N, Mohanrasu K, Rao RGR, Dinesh GH, Prakash GS, Ananthi V, Ponnuchamy K, Muthusamy G, Arun A (2021) A crucial review on polycyclic aromatic hydrocarbons-environmental occurrence and strategies for microbial degradation. Chemosphere 280:130608

    Article  CAS  PubMed  Google Scholar 

  56. Shimada K, Itoh Y, Washio K, Morikawa M (2012) Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms. Chemosphere 87(3):226–233

    Article  CAS  PubMed  Google Scholar 

  57. Das PP, Singh KR, Nagpure G, Mansoori A, Singh RP, Ghazi IA, Kumar A, Singh J (2022) Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ Res 214:113821

    Article  CAS  PubMed  Google Scholar 

  58. Yin K, Lv M, Wang Q, Wu Y, Liao C, Zhang W, Chen L (2016) Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Res 103:383–390

    Article  CAS  PubMed  Google Scholar 

  59. Yue ZB, Li Q, Li CC, Chen TH, Wang J (2015) Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria. Biores Technol 194:399–402

    Article  CAS  Google Scholar 

  60. Li D, Xu X, Yu H, Han X (2017) Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. J Environ Manage 196:8–15

    Article  CAS  PubMed  Google Scholar 

  61. Ren G, Jin Y, Zhang C, Gu H, Qu J (2015) Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb (II). Ecotoxicol Environ Saf 117:141–148

    Article  CAS  PubMed  Google Scholar 

  62. Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M (2017) Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr (VI): batch and column studies. Process Saf Environ Prot 108:44–56

    Article  CAS  Google Scholar 

  63. Quiton KG, Doma B Jr, Futalan CM, Wan MW (2018) Removal of chromium (VI) and zinc (II) from aqueous solution using kaolin-supported bacterial biofilms of gram-negative E. coli and gram-positive Staphylococcus epidermidis. Sustain Environ Res 28(5):206–213

    Article  CAS  Google Scholar 

  64. Magnin JP, Gondrexon N, Willison JC (2014) Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus. Can J Microbiol 60(12):829–837

    Article  CAS  PubMed  Google Scholar 

  65. Huang F, Dang Z, Guo CL, Lu GN, Gu RR, Liu HJ, Zhang H (2013) Biosorption of Cd (II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf, B 107:11–18

    Article  CAS  Google Scholar 

  66. Fang X, Li J, Li X, Pan S, Zhang X, Sun X, Shen J, Han W, Wang L (2017) Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem Eng J 314:38–49

    Article  CAS  Google Scholar 

  67. Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93(3):1305–1314

    Article  CAS  PubMed  Google Scholar 

  68. Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Biores Technol 97(10):1237–1242

    Article  CAS  Google Scholar 

  69. Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res 20(9):6628–6637

    Article  CAS  Google Scholar 

  70. Benguenab A, Chibani A (2021) Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil-contaminated soil. Acta Ecol Sin 41(5):416–423

    Article  Google Scholar 

  71. Peidro-Guzmán H, Pérez-Llano Y, González-Abradelo D, Fernández-López MG, Dávila-Ramos S, Aranda E, Hernández DRO, García AO, Lira-Ruan V, Pliego OR, Santana MA (2021) Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ Microbiol 23(7):3435–3459

    Article  PubMed  Google Scholar 

  72. Fayeulle A, Veignie E, Slomianny C, Dewailly E, Munch JC, Rafin C (2014) Energy-dependent uptake of benzo [a] pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani. Environ Sci Pollut Res 21(5):3515–3523

    Article  CAS  Google Scholar 

  73. Delsarte I, Rafin C, Mrad F, Veignie E (2018) Lipid metabolism and benzo [a] pyrene degradation by Fusarium solani: an unexplored potential. Environ Sci Pollut Res 25(12):12177–12182

    Article  CAS  Google Scholar 

  74. Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Article  CAS  Google Scholar 

  75. Singh RK, Tripathi R, Ranjan A, Srivastava AK (2020) Fungi as potential candidates for bioremediation. Abatement of environmental pollutants. Elsevier, Amsterdam, pp 177–191

    Chapter  Google Scholar 

  76. Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, Yu JH (2014) Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol 6(7):1620–1634

    Article  PubMed  PubMed Central  Google Scholar 

  77. Daccò C, Girometta C, Asemoloye MD, Carpani G, Picco AM, Tosi S (2020) Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: a review. Int Biodeterior Biodegrad 147:104866

    Article  Google Scholar 

  78. Bettin F, Cousseau F, Martins K, Boff NA, Zaccaria S, da Silveira MM, Dillon AJP (2019) Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. J Environ Manage 236:581–590

    Article  CAS  PubMed  Google Scholar 

  79. Wu Y, Jiang Y, Jiao J, Liu M, Hu F, Griffiths BS, Li H (2014) Adsorption of trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies. Colloids Surf, B 114:342–348

    Article  CAS  Google Scholar 

  80. Zeng J, Li Y, Dai Y, Wu Y, Lin X (2021) Effects of polycyclic aromatic hydrocarbon structure on PAH mineralization and toxicity to soil microorganisms after oxidative bioremediation by laccase. Environ Pollut 287:117581

    Article  CAS  PubMed  Google Scholar 

  81. Zeng J, Zhu Q, Wu Y, Shan J, Ji R, Lin X (2018) Oxidation of benzo [a] pyrene by laccase in soil enhances bound residue formation and reduces disturbance to soil bacterial community composition. Environ Pollut 242:462–469

    Article  CAS  PubMed  Google Scholar 

  82. Li X, Lin X, Zhang J, Wu Y, Yin R, Feng Y, Wang Y (2010) Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr Microbiol 60(5):336–342

    Article  CAS  PubMed  Google Scholar 

  83. Ma X, Li X, Liu J, Cheng Y, Zou J, Zhai F, Sun Z, Han L (2021) Soil microbial community succession and interactions during combined plant/white-rot fungus remediation of polycyclic aromatic hydrocarbons. Sci Total Environ 752:142224

    Article  CAS  PubMed  Google Scholar 

  84. Pozdnyakova N, Dubrovskaya E, Chernyshova M, Makarov O, Golubev S, Balandina S, Turkovskaya O (2018) The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol 122(5):363–372

    Article  CAS  PubMed  Google Scholar 

  85. Memic M, Vrtačnik M, Boh B, Pohleven F, Mahmutović, O (2017) Biodegradation of PAHs by ligninolytic fungi Hypoxylon fragiforme and Coniophora puteana. Polycycl Aromat Compd 40(1):1–8

  86. Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LI (2018) Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere 208:139–148

    Article  PubMed  Google Scholar 

  87. Alsharari SF, Tayel AA, Moussa SH (2018) Soil emendation with nano-fungal chitosan for heavy metals biosorption. Int J Biol Macromol 118:2265–2268

    Article  CAS  PubMed  Google Scholar 

  88. Oh JJ, Kim JY, Kim YJ, Kim S, Kim GH (2021) Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere 272:129884

    Article  CAS  PubMed  Google Scholar 

  89. Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol 30(6):780–787

    Article  CAS  Google Scholar 

  90. Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49

    Article  Google Scholar 

  91. Yang J, Wang Q, Luo Q, Wang Q, Wu T (2009) Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J 46(3):294–299

    Article  CAS  Google Scholar 

  92. Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z (2022) Bioremediation of PAHs and heavy metals co-contaminated soils: challenges and enhancement strategies. Environ Pollut 295:118686

  93. Zafra G, Taylor TD, Absalón AE, Cortés-Espinosa DV (2016) Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. J Hazard Mater 318:702–710

    Article  CAS  PubMed  Google Scholar 

  94. Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2008) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150(1):21–26

    Article  CAS  PubMed  Google Scholar 

  95. Wu M, Chen L, Tian Y, Ding Y, Dick WA (2013) Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Pollut 178:152–158

    Article  CAS  PubMed  Google Scholar 

  96. Yin T, Lin H, Dong Y, Li B, He Y, Liu C, Chen X (2021) A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization. J Hazard Mater 401:123269

    Article  CAS  PubMed  Google Scholar 

  97. Belimov AA, Shaposhnikov AI, Azarova TS, Makarova NM, Safronova VI, Litvinskiy VA, Nosikov VV, Zavalin AA, Tikhonovich IA (2020) Microbial consortium of PGPR, rhizobia and arbuscular mycorrhizal fungus makes pea mutant SGECdt comparable with Indian Mustard in cadmium tolerance and accumulation. Plants 9(8):975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hou D, Zhang P, Wei D, Zhang J, Yan B, Cao L, Zhou Y, Luo L (2020) Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria. J Hazard Mater 396:122631

    Article  CAS  PubMed  Google Scholar 

  99. Wan W, Xing Y, Qin X, Li X, Liu S, Luo X, Huang Q, Chen W (2020) A manganese-oxidizing bacterial consortium and its biogenic Mn oxides for dye decolorization and heavy metal adsorption. Chemosphere 253:126627

    Article  CAS  PubMed  Google Scholar 

  100. Sharma P, Bano A, Singh SP, Sharma S, Xia CL, Nadda AK, Lam S, Tong YW (2022) Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135538

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sharma R, Jasrotia T, Umar A, Sharma M, Sharma S, Kumar R, Alkhanjaf AAM, Vats R, Beniwal V, Kumar R, Singh J (2022) Effective removal of Pb (II) and Ni (II) ions by Bacillus cereus and Bacillus pumilus: an experimental and mechanistic approach. Environ Res 212:113337

    Article  CAS  PubMed  Google Scholar 

  102. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  PubMed  Google Scholar 

  103. Li T, Wright DA, Spalding MH, Yang B (2015) TALEN-based genome editing in yeast. Genetic transformation systems in fungi, vol 1. Springer, Cham, pp 289–307

    Chapter  Google Scholar 

  104. Zafra G, Absalón ÁE, Anducho-Reyes MÁ, Fernandez FJ, Cortés-Espinosa DV (2017) Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere 172:120–126

    Article  CAS  PubMed  Google Scholar 

  105. Chi Y, Huang Y, Wang J, Chen X, Chu S, Hayat K, Xu Z, Xu H, Zhou P, Zhang D (2020) Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. Sci Total Environ 741:140422

    Article  CAS  PubMed  Google Scholar 

  106. Alotaibi BS, Khan M, Shamim S (2021) Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms 9(8):1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Heidari P, Panico A (2020) Sorption mechanism and optimization study for the bioremediation of Pb (II) and Cd (II) contamination by two novel isolated strains Q3 and Q5 of Bacillus sp. Int J Environ Res Public Health 17(11):4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Prabhakaran DC, Bolanos-Benitez V, Sivry Y, Gelabert A, Riotte J, Subramanian S (2019) Mechanistic studies on the bioremediation of Cr (VI) using Sphingopyxis macrogoltabida SUK2c, a Cr (VI) tolerant bacterial isolate. Biochem Eng J 150:107292

    Article  CAS  Google Scholar 

  109. San Keskin NO, Celebioglu A, Sarioglu OF, Uyar T, Tekinay T (2018) Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids Surf, B 161:169–176

    Article  CAS  Google Scholar 

  110. Cheng C, Han H, Wang Y, Wang R, He L, Sheng X (2020) Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil. Sci Total Environ 740:139972

    Article  CAS  PubMed  Google Scholar 

  111. Satchanska, G., 2022. Growing Environmental Bacterium Biofilms in PEO Cryogels for Environmental Biotechnology Application.

  112. Husain R, Vikram N, Yadav G, Kumar D, Pandey S, Patel M, Khan NA, Hussain T (2022) Microbial bioremediation of heavy metals by Marine bacteria. Development in wastewater treatment research and processes. Elsevier, Amsterdam, pp 177–203

    Chapter  Google Scholar 

  113. Wang C, He S, Zou Y, Liu J, Zhao R, Yin X, Zhang H, Li Y (2020) Quantitative evaluation of in-situ bioremediation of compound pollution of oil and heavy metal in sediments from the Bohai Sea China. Marine Pollu Bull 150:110787

    Article  CAS  Google Scholar 

  114. Viesser JA, Sugai-Guerios MH, Malucelli LC, Pincerati MR, Karp SG, Maranho LT (2020) Petroleum-tolerant rhizospheric bacteria: Isolation, characterization and bioremediation potential. Sci Rep 10(1):1–11

    Article  Google Scholar 

  115. Xinhong GAN, Ying TENG, Jian XU, Zhang N, Wenjie REN, Ling ZHAO, Christie P, Yongming LUO (2022) Influences of kaolinite and montmorillonite on benzo [a] pyrene biodegradation by Paracoccus aminovorans HPD-2 and the underlying interface interaction mechanisms. Pedosphere 32(2):246–255

    Article  Google Scholar 

  116. Gupta B, Puri S, Thakur IS, Kaur J (2020) Enhanced pyrene degradation by a biosurfactant producing Acinetobacter baumannii BJ5: Growth kinetics, toxicity and substrate inhibition studies. Environ Technol Innov 19:100804

    Article  Google Scholar 

  117. Zhang G, Wang J, Zhao H, Liu J, Ling W (2021) PAH degradation and gene abundance in soils and vegetables inoculated with PAH-degrading endophytic bacteria. Appl Soil Ecol 168:104193

    Article  Google Scholar 

  118. Laothamteep N, Kawano H, Vejarano F, Suzuki-Minakuchi C, Shintani M, Nojiri H, Pinyakong O (2021) Effects of environmental factors and coexisting substrates on PAH degradation and transcriptomic responses of the defined bacterial consortium OPK. Environ Pollut 277:116769

    Article  CAS  PubMed  Google Scholar 

  119. Nzila A, Musa MM, Sankara S, Al-Momani M, Xiang L, Li QX (2021) Degradation of benzo [a] pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS ONE 16(2):e0247723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alfaify AM, Mir MA, Alrumman SA (2022) Klebsiella oxytoca: an efficient pyrene-degrading bacterial strain isolated from petroleum-contaminated soil. Arch Microbiol 204(5):1–9

    Article  Google Scholar 

  121. Cauduro GP, Leal AL, Marmitt M, de Ávila LG, Kern G, Quadros PD, Mahenthiralingam E, Valiati VH (2021) New benzo (a) pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. Environ Monit Assess 193(4):1–12

    Article  Google Scholar 

  122. Chen Y, Chen Y, Li Y, Wu Y, Zeng Z, Xu R, Wang S, Li H, Zhang J (2019) Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of Phanerochaete chrysosporium. J Hazard Mater 378:120757

    Article  CAS  PubMed  Google Scholar 

  123. Lin CW, Lai CY, Liu SH, Chen YR, Alfanti LK (2021) Enhancing bioelectricity generation and removal of copper in microbial fuel cells with a laccase-catalyzed biocathode. J Clean Prod 298:126726

    Article  Google Scholar 

  124. Liu J, Liu F, Ding C, Ma F, Yu H, Shi Y, Zhang X (2020) Response of Trametes hirsuta to hexavalent chromium promotes laccase-mediated decolorization of reactive black 5. Ecotoxicol Envir 205:111134

    Article  CAS  Google Scholar 

  125. Liu Q, Bai JF, Gu WH, Peng SJ, Wang LC, Wang JW, Li HX (2020) Leaching of copper from waste printed circuit boards using Phanerochaete chrysosporium fungi. Hydrometallurgy 196:105427

    Article  CAS  Google Scholar 

  126. Chang J, Zhang H, Cheng H, Yan Y, Chang M, Cao Y, Huang F, Zhang G, Yan M (2020) Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb2+/Cd2+ removal in water. Chemosphere 241:125121

    Article  CAS  PubMed  Google Scholar 

  127. Hanif MA, Bhatti HN (2015) Remediation of heavy metals using easily cultivable, fast growing, and highly accumulating white rot fungi from hazardous aqueous streams. Desalin Water Treat 53(1):238–248

    Article  CAS  Google Scholar 

  128. Miao J, Wang F, Li Q, Li J, Zhang S, Jiang Y (2021) Fir bark modified by Phanerodontia chrysosporium: A low-cost amendment for cd-contaminated water and agricultural soil. Ecotoxicol Environ Saf 209:111830

    Article  CAS  PubMed  Google Scholar 

  129. Sharma KR, Giri R, Sharma RK (2020) Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora. Lett Appl Microbiol 71(6):637–644

    Article  CAS  PubMed  Google Scholar 

  130. Kocaoba S, Arısoy M (2018) Biosorption of cadmium (II) and lead (II) from aqueous solutions using Pleurotus ostreatus immobilized on bentonite. Sep Sci Technol 53(11):1703–1710

    Article  CAS  Google Scholar 

  131. Huang Z, He K, Song Z, Zeng G, Chen A, Yuan L, Li H, Chen G (2019) Alleviation of heavy metal and silver nanoparticle toxicity and enhancement of their removal by hydrogen sulfide in Phanerochaete chrysosporium. Chemosphere 224:554–561

    Article  CAS  PubMed  Google Scholar 

  132. Jing L, Zhang X, Ali I, Chen X, Wang L, Chen H, Han M, Shang R, Wu Y (2020) Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass. Environ Int 144:106051

    Article  CAS  PubMed  Google Scholar 

  133. Wollenberg A, Kretzschmar J, Drobot B, Hübner R, Freitag L, Lehmann F, Günther A, Stumpf T, Raff J (2021) Uranium (VI) bioassociation by different fungi–a comparative study into molecular processes. J Hazard Mater 411:125068

    Article  CAS  PubMed  Google Scholar 

  134. Ariste AF, Batista-García RA, Vaidyanathan VK, Raman N, Vaithyanathan VK, Folch-Mallol JL, Jackson SA, Dobson AD, Cabana H (2020) Mycoremediation of phenols and polycyclic aromatic hydrocarbons from a biorefinery wastewater and concomitant production of lignin modifying enzymes. J Clean Prod 253:119810

    Article  CAS  Google Scholar 

  135. Thion C, Cébron A, Beguiristain T, Leyval C (2013) Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation 24(4):569–581

    Article  CAS  PubMed  Google Scholar 

  136. Balaji V, Arulazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol 35(3):521

    CAS  PubMed  Google Scholar 

  137. Gupta, M.S., Fernandes, M.S., Gupta, M.H. and Rathod, S., 2021. Assessment of Mycoremediation Potential of Fusarium Spp. On Polycyclic Aromatic Hydrocarbon in Western India.

  138. Mao J, Guan W (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric Scand Sect B—Soil Plant Sci 66(5):399–405

    CAS  Google Scholar 

  139. Bhattacharya S, Das A, Prashanthi K, Palaniswamy M, Angayarkanni J (2014) Mycoremediation of Benzo [a] pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators. 3 Biotech 4(2):205–211

    Article  PubMed  Google Scholar 

  140. Košnář Z, Částková T, Wiesnerová L, Praus L, Jablonský I, Koudela M, Tlustoš P (2019) Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities. J Environ Sci 76:249–258

    Article  Google Scholar 

  141. Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23(9):1544–1550

    Article  CAS  Google Scholar 

  142. Ouyang J, Guo W, Li B, Gu L, Zhang H, Chen X (2013) Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans cultivated in high potassium concentration. Microbiol Res 168(7):455–460

    Article  CAS  PubMed  Google Scholar 

  143. Guo K, Cheng C, Chen L, Xie J, Li S, He S, Xiao F (2022) Application of Deinococcus radiodurans in the treatment of environmental pollution by heavy metals and radionuclides. J Radioanal Nucl Chem 331(2):655–664

    Article  CAS  Google Scholar 

  144. Mulla SI, Ameen F, Talwar MP, Eqani SAMAS, Bharagava RN, Saxena G, Tallur PN, Ninnekar HZ (2020) Organophosphate pesticides: impact on environment, toxicity, and their degradation. Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 265–290

    Chapter  Google Scholar 

  145. Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML (2017) Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J 11(1):248–262

    Article  CAS  PubMed  Google Scholar 

  146. Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69(6):3176–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Farnham KR, Dube DH (2015) A semester-long project-oriented biochemistry laboratory based on H elicobacter pylori urease. Biochem Mol Biol Educ 43(5):333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chang S, Wei F, Yang Y, Wang A, Jin Z, Li J, He Y, Shu H (2015) Engineering tobacco to remove mercury from polluted soil. Appl Biochem Biotechnol 175(8):3813–3827

    Article  CAS  PubMed  Google Scholar 

  149. Liu H, Guo Y, Wang Y, Zhang H, Ma X, Wen S, Jin J, Song W, Zhao B, Ozaki Y (2021) A nanozyme-based enhanced system for total removal of organic mercury and SERS sensing. J Hazard Mater 405:124642

    Article  CAS  PubMed  Google Scholar 

  150. Liu Y, Zhang H, He X, Liu J (2021) Genetically engineered methanotroph as a platform for bioaugmentation of chemical pesticide contaminated soil. ACS Synth Biol 10(3):487–494

    Article  CAS  PubMed  Google Scholar 

  151. Tay PKR, Nguyen PQ, Joshi NS (2017) A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth Biol 6(10):1841–1850

    Article  PubMed  Google Scholar 

  152. Carrillo JT, Borthakur D (2021) Do uncommon plant phenolic compounds have uncommon properties? A mini review on novel flavonoids. J Bioresour Bioprod 6(4):279–291

    Article  CAS  Google Scholar 

  153. Zhou Y, Wei J, Shao N, Wei D (2013) Construction of a genetically engineered microorganism for phenanthrene biodegradation. J Basic Microbiol 53(2):188–194

    Article  CAS  PubMed  Google Scholar 

  154. Sakshi S, SK, Haritash AK (2022) Evolutionary relationship of polycyclic aromatic hydrocarbons degrading bacteria with strains isolated from petroleum contaminated soil based on 16S rRNA diversity. Polycyclic Aromat Compd 42(5):2045–2058

Download references

Acknowledgements

We are grateful to the Science and Engineering Research Board (SERB), New Delhi, for the Start-up Research Grant (SRG/2019/001940).

Author information

Authors and Affiliations

Authors

Contributions

PS: conceptualization, writing-original draft, Editing & Reviewing AB: conceptualization, writing-original draft, Editing & Reviewing SPS: conceptualization, writing-original draft, Editing & Reviewing. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Surendra Pratap Singh.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal that could have appeared to influence the work reported in this paper. All authors have read and agreed to the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Bano, A., Yadav, S. et al. Biocatalytic Degradation of Emerging Micropollutants. Top Catal 66, 676–690 (2023). https://doi.org/10.1007/s11244-023-01790-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01790-y

Keywords

Navigation