Skip to main content
Log in

Synthesis, Characterization and Biomimetic Activity of Heterogenized Dioxidomolybdenum(VI) Complex and Its Homogeneous Analogue

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Cis-[MoVIO2(CH3-hptb)(MeOH)] (1) has been synthesized by the reaction of [MoVIO2(acac)2] and deferasirox [ICL670: 4-[3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl]benzoic acid, H3hptb, I] in 1:1 molar ratio in MeOH. Complex 1 has been characterized successfully by several spectral techniques, viz. FT-IR, UV–Vis, 1H and 13C NMR, elemental (CHN) and thermogravimetric analysis. The esterification of the carboxylic group of ligand was observed during the complexation process with molybdenum. The analogous heterogeneous complex [MoVIO2(hptb)(MeOH)]@APTMS-TiO2 (2) has been synthesized by immobilizing I on amine-functionalized TiO2, {[H2hptb]@APTMS-TiO2 (II)} and then reacting it with [MoVIO2(acac)2] in MeOH. Characterization of the immobilized complex was achieved through FT-IR, DRS, P-XRD, TEM, thermogravimetric analysis and MP-AES. Both the complexes have been utilized in synthesizing organobromine compounds through oxidative bromination of styrene in the presence of KBr, oxidant (30% aq. H2O2) and 70% aq. HClO4 at room temperature. With the formation of 2-bromo-1-phenylethane-1-ol and 1-phenylethane-1,2-diol under the optimized reaction conditions, 72 and 100% conversion of styrene was achieved in the presence of catalysts 1 and 2, respectively. The oxidative bromination of thymol with catalyst 2 provides 2-bromothymol (52%) and 2,4-dibromothymol (48%) with 100% conversion.

Graphical Abstract

Dioxidomolybdenum(VI) complex of ICL670 immobilized on amine-functionalized titania has been synthesized and used as a functional model of haloperoxidases for the oxidative bromination of thymol and styrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3
Fig. 10
Scheme 4
Fig. 11
Scheme 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are mostly provided in the research article.

References

  1. Dagani MJ, Barda HJ, Benya TJ, Sanders DC (2000) Bromine compounds. Ullmann’s encyclopedia of industrial chemistry

  2. House H (1972) Modern Synthetic Reactions, 2nd edn p. 383

  3. De Meijere A, Diederich F (2004) Metal-catalyzed cross-coupling reactions. Wiley, New York, pp 70–86

    Book  Google Scholar 

  4. Lodder G, Cornelisse J, Patai S, Rappoport Z (1995) The Chemistry of Functional Groups, Supplement D2

  5. Turner DL (1972) J Food Sci 37:791–792

    Article  CAS  Google Scholar 

  6. Laskowski DA (2002) Rev Environ Contam Toxicol 74:49–170

    Article  Google Scholar 

  7. Wanière GH (1973) In: Patai S (ed.) The chemistry of functional groups—the chemistry of the carbon-halogen bond. Wiley, Chichester

  8. Green J (1996) J Fire Sci 14:426–442

    Article  CAS  Google Scholar 

  9. Gribble GW (1999) Chem Soc Rev 28:335–346

    Article  CAS  Google Scholar 

  10. Friedländer P (1909) Ber Dtsch Chem Ges 42:765–770. https://doi.org/10.1002/cber.190904201122

    Article  Google Scholar 

  11. Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure, 6th edn. John Wiley & Sons Inc, Hodoken, New Jersey

    Google Scholar 

  12. Kogel JE, Trivedi NC, Barker JM, Krukowski ST (2006) Industrial minerals & rocks: commodities, markets and uses, 7th edn. Society for mining, metallurgy and exploration, (SME) 285–294

  13. Carrenõ MC, Ruano JLG, Sanz G, Toledo MA, Urbano A (1995) J Org Chem 60:5328–5331

    Article  Google Scholar 

  14. Oberhauser T (1997) J Org Chem 62:4504–4506

    Article  CAS  PubMed  Google Scholar 

  15. Rajagopal R, Jarikote DV, Lahoti RJ, Daniel T, Srinivasan KV (2003) Tetrahedron Lett 44:1815–1817

    Article  CAS  Google Scholar 

  16. Sarma JARP, Nagaraju A (2000) J Chem Soc Perkin Trans 2(6):1113–1118

    Article  Google Scholar 

  17. Pravst I, Zupan M, Stavber S (2006) Green Chem 8:1001–1005

    Article  CAS  Google Scholar 

  18. Heropoulos GA, Cravotto G, Screttas CG, Steele BR (2007) Tetrahedron Lett 48:3247–3250

    Article  CAS  Google Scholar 

  19. Pravst I, Zupan M, Stavber S (2008) Tetrahedron 64:5191–5199

    Article  CAS  Google Scholar 

  20. Chiappe C, Leandri E, Pieraccini D (2004) Chem Commun 2004(22):2536–2537

    Article  Google Scholar 

  21. Kavala V, Naik S, Patel BK (2005) J Org Chem 70:4267–4271

    Article  CAS  PubMed  Google Scholar 

  22. Salazar J, Dorta R (2004) Synlett 2004:1318–1320

    Article  Google Scholar 

  23. Fu H, Kondo H, Ichikawa Y, Look GC, Wong CH (1992) J Org Chem 57:7265–7270

    Article  CAS  Google Scholar 

  24. Tenaglia A, Pardigon O, Buono G (1996) J Org Chem 61:1129–1132

    Article  CAS  Google Scholar 

  25. Majetich G, Hicks R, Reister S (1997) J Org Chem 62:4321–4326

    Article  CAS  PubMed  Google Scholar 

  26. Eissen M, Lenoir D (2008) Chem Eur J 14:9830–9841

    Article  CAS  PubMed  Google Scholar 

  27. Podgoršek A, Zupan M, Iskra J (2009) Angew Chem Intl Edn 48:8424–8450

    Article  Google Scholar 

  28. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford, London

    Google Scholar 

  29. Sheldon RA (2000) Green Chem 2:G1–G4

    Article  Google Scholar 

  30. Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC (2000) Catal today 55:11–22

    Article  CAS  Google Scholar 

  31. Conte V, Di Furia F, Moro S (1994) Tetrahedron Lett 35:7429–7432

    Article  CAS  Google Scholar 

  32. Sels BF, De Vos DE, Jacobs PA (2001) J Am Chem Soc 123:8350–8359

    Article  CAS  PubMed  Google Scholar 

  33. Moriuchi T, Yamaguchi M, Kikushima K, Hirao T (2007) Tetrahedron Lett 48:2667–2670

    Article  CAS  Google Scholar 

  34. Rothenberg G, Clark JH (2000) Org Process Res Dev 4:270–274

    Article  CAS  Google Scholar 

  35. Choudary BM, Sudha Y, Reddy PN (1994) Synlett 1994:450

    Article  Google Scholar 

  36. Firouzabadi H, Iranpoor N, Kazemi S, Ghaderi A, Garzan A (2009) Adv Synth Catal 351:1925–1932

    Article  CAS  Google Scholar 

  37. Mallik S, Parida KM, Dash SS (2007) J Mol Catal A: Chem 261:172–179

    Article  CAS  Google Scholar 

  38. Mallik S, Parida KM (2007) Catal Commun 8:889–893

    Article  Google Scholar 

  39. Van Pee KH, Unversucht S (2003) Chemosphere 52:299–312

    Article  PubMed  Google Scholar 

  40. Meister GE, Butler A (1994) Inorg Chem 33:3269–3275

    Article  CAS  Google Scholar 

  41. Reynolds MS, Morandi SJ, Raebiger JW, Melican SP, Smith SPE (1994) Inorg Chem 33:4977–4984

    Article  CAS  Google Scholar 

  42. Boruah JJ, Das SP, Borah R, Gogoi SR, Islam NS (2013) Polyhedron 52:246–254

    Article  CAS  Google Scholar 

  43. Bora U, Chaudhuri MK, Dey D, Dhar SS (2001) Pure Appl Chem 73:93–102

    Article  CAS  Google Scholar 

  44. Olowoyo JO, Hernández NC, Kumar M, Jain SL, Babalola JO, Kumar U (2018) ChemistrySelect 3:3659–3663

    Article  CAS  Google Scholar 

  45. Sarkheil M, Lashanizadegan M, Ghiasi M (2019) J Mol Str 1179:278–288

    Article  CAS  Google Scholar 

  46. Chen GJJ, McDonald JW, Newton WE (1976) Inorg Chem 15:2612–2615

    Article  CAS  Google Scholar 

  47. Steinhauser S, Heinz U, Bartholomä M, Weyhermüller T, Nick H, Hegetschweiler K (2004) Eur J Inorg Chem 2004(21):4177–4192

    Article  Google Scholar 

  48. Maurya MR, Saini N, Avecilla F (2015) RSC Adv 5:101076–101088

    Article  CAS  Google Scholar 

  49. Maurya MR, Chauhan A, Arora S, Gupta P (2022) Catal Today 397–399:3–15

    Article  Google Scholar 

  50. Maurya MR, Sarkar B, Avecilla F, Tariq S, Azam A, Correia I (2016) Eur J Inorg Chem 2016(9):1430–1441

    Article  CAS  Google Scholar 

  51. Maurya MR, Chauhan A, Verma A, Kumar U, Avecilla F (2020) Catal Today 388–389:274–287

    Google Scholar 

  52. Shang X, Li B, Li C, Wang X, Zhang T, Jiang S (2013) Dyes Pigm 98:358–366

    Article  CAS  Google Scholar 

  53. Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) J Phys Chem B 106:637–645

    Article  Google Scholar 

  54. Maurya MR, Dhaka S, Avecilla F (2014) Polyhedron 67:145–159

    Article  CAS  Google Scholar 

  55. Maurya MR, Mengesha B, Maurya SK, Sehrawat N, Avecilla F (2019) Inorg Chim Acta 486:757–765

    Article  CAS  Google Scholar 

  56. Conte V, Coletti A, Floris B, Licini G, Zonta C (2011) Coord Chem Rev 255:2165–2177

    Article  CAS  Google Scholar 

  57. Maurya MR, Haldar C, Khan AA, Azam A, Salahuddin A, Kumar A, Costa Pessoa J (2012) Eur J Inorg Chem 2012(15):2560–2577

    Article  CAS  Google Scholar 

  58. Maurya MR, Maurya SK, Kumar N, Gupta P (2021) Eur J Inorg Chem 2021(27):2724–2738

    Article  CAS  Google Scholar 

  59. Mohanty M, Maurya SK, Banerjee A, Patra SA, Maurya MR, Crochet A, Brzezinski K, Dinda R (2019) New J Chem 43:17680–17695

    Article  CAS  Google Scholar 

  60. Kurapati SK, Maloth S, Pal S (2015) Inorg Chim Acta 430:66–73

    Article  CAS  Google Scholar 

  61. Biswal D, Pramanik NR, Chakrabarti S, Drew MG, Sarkar B, Maurya MR, Mukherjee SK, Chowdhury P (2017) New J Chem 41:4116–4137

    Article  CAS  Google Scholar 

  62. Maurya MR, Mengesha B, Maurya SK, Avecilla F (2019) Inorg Chim Acta 493:118–126

    Article  CAS  Google Scholar 

  63. Kurapati SK, Pal S (2016) Appl Organomet Chem 30:116–124

    Article  CAS  Google Scholar 

  64. Ghosh S, Kurapati SK, Pal S (2017) Polyhedron 125:26–33

    Article  CAS  Google Scholar 

  65. Kesharwani N, Chaudhary N, Haldar C (2021) Catal Lett 151:3562–3581

    Article  CAS  Google Scholar 

  66. Maurya MR, Rana L, Avecilla F (2016) Inorg Chim Acta 440:172–180

    Article  CAS  Google Scholar 

  67. Maurya MR, Dhaka S, Avecilla F (2015) Polyhedron 96:79–87

    Article  CAS  Google Scholar 

  68. Maurya MR, Uprety B, Avecilla F, Adão P, Pessoa JC (2015) Dalton Trans 44:17736–17755

    Article  CAS  PubMed  Google Scholar 

  69. Maurya MR, Jangra N, Avecilla F, Correia I (2019) Eur J Inorg Chem 2019(2):314–329

    Article  CAS  Google Scholar 

  70. Maurya MR, Kumar A, Ebel M, Rehder D (2006) Inorg Chem 45:5924–5937

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MRM thanks the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi, India for financial support of the work (Grant Number CRG/2018/000182). AC is thankful to University Grant Commission, New Delhi, India for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannar R. Maurya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 666 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, M.R., Chauhan, A. Synthesis, Characterization and Biomimetic Activity of Heterogenized Dioxidomolybdenum(VI) Complex and Its Homogeneous Analogue. Top Catal 66, 420–434 (2023). https://doi.org/10.1007/s11244-022-01747-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01747-7

Keywords

Navigation