Skip to main content
Log in

A green one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by novel Aurivillius nanostructures under solvent-free conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Aurivillius nanostructures of Bi2ZnAl2O9 were biosynthesized via a green co-precipitation method using bismuth nitrate pentahydrate, zinc acetate dihydrate and aluminum acetate in the presence of ethanol amine as the precipitating agent and mulberry leaves extract as preparing the green and mild media for the reaction of catalyst synthesis. For better characterization of the obtained nanostructures of Aurivillius, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FE-SEM) were applied as the characterizing techniques. In spite of the electrical, physical and photochemical applications of Aurivillius nanostructures, for the first time, perovskite-like Aurivillius nanostructures were used in the organic chemical synthesis of pyrimidines. These recyclable heterogeneous nanoparticles were applied in the one-pot Biginelli coupling reaction of beta-keto esters, different aromatic aldehydes and urea to afford the related 3,4-dihydropyrimidin-2-(1H) derivatives in good to excellent yields under solvent-free conditions at 80 °C as the optimized temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  Google Scholar 

  2. Xia Y, Yang P (2003) Guest editorial: chemistry and physics of nanowires. Adv Mater 15:351–352

    Article  CAS  Google Scholar 

  3. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    Article  CAS  Google Scholar 

  4. Zhang Y-W, Sun X, Si R, You L-P, Yan C-H (2005) Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J Am Chem Soc 127:3260–3261

    Article  CAS  Google Scholar 

  5. Li M, Schnablegger H, Mann S (1999) Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402:393–395

    Article  CAS  Google Scholar 

  6. Park S, Lim J-H, Chung S-W, Mirkin CA (2004) Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303:348–351

    Article  CAS  Google Scholar 

  7. Liu B, Zeng HC (2004) Mesoscale organization of CuO nanoribbons: formation of “dandelions”. J Am Chem Soc 126:8124–8125

    Article  CAS  Google Scholar 

  8. Zhang T, Dong W, Keeter-Brewer M, Konar S, Njabon RN, Tian ZR (2006) Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J Am Chem Soc 128:10960–10968

    Article  CAS  Google Scholar 

  9. Wachsmuth B, Zschech E, Thomas N, Brodie S, Gurman S, Baker S, Bayliss S (1993) Structure model of Aurivillius compounds. An EXAFS study. Physi Status Solidi A 135:59–71

    Article  CAS  Google Scholar 

  10. Mitchell RH (2002) Perovskites: modern and ancient, vol 3. Almaz Press, Thunder Bay

    Google Scholar 

  11. Zhu J, Bienaymé H (2005) Multicomponent Reactions. Wiley-VCH, Weinheim

    Book  Google Scholar 

  12. Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Multiple-component condensation strategies for combinatorial library synthesis. Accounts Chem Res 29:123–131

    Article  CAS  Google Scholar 

  13. Tietze LF, Modi A (2000) Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med Res Rev 20:304–322

    Article  CAS  Google Scholar 

  14. Dömling A (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr Opin Chem Biol 6:306–313

    Article  Google Scholar 

  15. Weber L (2002) Multi-component reactions and evolutionary chemistry. Drug Discov Today 7:143–147

    Article  CAS  Google Scholar 

  16. Ugi I, Heck S (2001) The multicomponent reactions and their libraries for natural and preparative chemistry. Comb Chem High T Scr 4:1–34

    CAS  Google Scholar 

  17. Bannwarth W, Hinzen B, Mannhold R, Kubinyi H, Folkers G (2006) Combinatorial chemistry: From theory to application. Wiley, Hoboken

    Book  Google Scholar 

  18. Volochnyuk DM, Ryabukhin SV, Plaskon AS, Grygorenko OO (2009) Organosilicon compounds as water scavengers in reactions of carbonyl compounds. Synthesis 2009:3719–3743

    Article  Google Scholar 

  19. Ryabukhin SV, Plaskon AS, Ostapchuk EN, Volochnyuk DM, Shishkin OV, Shivanyuk AN, Tolmachev AA (2007) A one-step fusion of 1, 3-thiazine and pyrimidine cycles. Org Lett 9:4215–4218

    Article  CAS  Google Scholar 

  20. Ryabukhin SV, Plaskon AS, Ostapchuk EN, Volochnyuk DM, Shishkin OV, Tolmachev AA (2008) CF 3-substituted 1, 3-dicarbonyl compounds in the Biginelli reaction promoted by chlorotrimethylsilane. J Fluorine Chem 129:625–631

    Article  CAS  Google Scholar 

  21. Zhu Y, Pan Y, Huang S (2004) Trimethylsilyl chloride: a facile and efficient reagent for one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. Synthetic Commun 34:3167–3174

    Article  CAS  Google Scholar 

  22. Foroughifar N, Mobinikhaledi A, FathinejadJirandehi H (2003) Microwave assisted synthesis of some pyrimidine derivatives using polyphosphate ester (PPE) in ceramic bath. Phosphorus Sulfur 178:1241–1246

    Article  CAS  Google Scholar 

  23. Kappe CO (2000) Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Accounts Chem Res 33:879–888

    Article  CAS  Google Scholar 

  24. Ma Y, Qian C, Wang L, Yang M (2000) Lanthanide triflate catalyzed Biginelli reaction. One-Pot synthesis of dihydropyrimidinones under solvent-free conditions. J Org Chem 65:3864–3868

    Article  CAS  Google Scholar 

  25. Hu EH, Sidler DR, Dolling U-H (1998) Unprecedented catalytic three component one-pot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl- 4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J Org Chem 63:3454–3457

    Article  CAS  Google Scholar 

  26. Wang Z-T, Xu L-W, Xia C-G, Wang H-Q (2004) Novel Biginelli-like three-component cyclocondensation reaction: efficient synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 45:7951–7953

    Article  CAS  Google Scholar 

  27. Maiti G, Kundu P, Guin C (2003) One-pot synthesis of dihydropyrimidinones catalysed by lithium bromide: an improved procedure for the Biginelli reaction. Tetrahedron Lett 44:2757–2758

    Article  CAS  Google Scholar 

  28. Reddy CV, Mahesh M, Raju PVK, Babu TR, Reddy VVN (2002) Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 43:2657–2659

    Article  CAS  Google Scholar 

  29. Ramalinga K, Vijayalakshmi P, Kaimal TNB (2001) Bismuth(III)-catalyzed synthesis of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction. Synlett 2001:0863–0865

    Article  Google Scholar 

  30. Ananda Kumar K, Kasthuraiah M, Suresh Reddy C, Devendranath Reddy C (2001) Mn(OAc)3·2H2O-mediated three-component, one-pot, condensation reaction: an efficient synthesis of 4-aryl-substituted 3,4-dihydropyrimidin-2-ones. Tetrahedron Lett 42:7873–7875

    Article  CAS  Google Scholar 

  31. Lu J, Bai Y, Wang Z, Yang B, Ma H (2000) One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst. Tetrahedron Lett 41:9075–9078

    Article  CAS  Google Scholar 

  32. Ranu BC, Hajra A, Jana U (2000) Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction. J Org Chem 65:6270–6272

    Article  CAS  Google Scholar 

  33. Paraskar AS, Dewkar GK, Sudalai A (2003) Cu(OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 44:3305–3308

    Article  CAS  Google Scholar 

  34. Ghosh R, Maiti S, Chakraborty A (2004) In(OTf)3-catalysed one-pot synthesis of 3,4-dihydropyrimidin-2(lH)-ones. J Mol Catal A: Chem 217:47–50

    Article  CAS  Google Scholar 

  35. Sun Q, Y-q Wang, Z-m Ge, T-m Cheng, R-t Li (2004) A highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc chloride. Synthesis 2004:1047–1051

    Google Scholar 

  36. Lu J, Bai Y (2002) Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Synthesis 2002:0466–0470

    Article  Google Scholar 

  37. Salehi H, Guo QX (2004) A facile and efficient one-pot synthesis of dihydropyrimidinones catalyzed by magnesium bromide under solvent-free conditions. Synthetic Commun 34:171–179

    Article  CAS  Google Scholar 

  38. Bose DS, Fatima L, Mereyala HB (2003) Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3,4- dihydropyrimidin-2(1H)-ones by a three-component coupling of one-pot condensation reaction: comparison of ethanol, water, and solvent-free conditions. J Org Chem 68:587–590

    Article  CAS  Google Scholar 

  39. Su W, Li J, Zheng Z, Shen Y (2005) One-pot synthesis of dihydropyrimidiones catalyzed by strontium(II) triflate under solvent-free conditions. Tetrahedron Lett 46:6037–6040

    Article  CAS  Google Scholar 

  40. Shirini F, Zolfigol M, Abri A-R (2008) Fe (HSO4)3 as an efficient catalyst for the preparation of 3,4-dihydropyrimidin-2 (1H)-ones in solution and under solvent-free conditions. J Iran Chem Soc 5:96–99

    Article  CAS  Google Scholar 

  41. Mobinikhaledi A, Foroughifar N, Khajeh-Amiri A (2016) N-Propylcarbamothioyl benzamide complex of Bi(III) supported on superparamagnetic Fe3O4/SiO2 nanoparticles as a highly efficient and magnetically recoverable heterogeneous nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2 (1H)-ones/thiones (DHPMs) via the Biginelli reaction. React Kinet Catal 117:59–75

    Article  CAS  Google Scholar 

  42. Litvić M, Večenaj I, Ladišić ZM, Lovrić M, Vinković V, Filipan-Litvić M (2010) First application of hexaaquaaluminium(III) tetrafluoroborate as a mild, recyclable, non-hygroscopic acid catalyst in organic synthesis: a simple and efficient protocol for the multigram scale synthesis of 3,4-dihydropyrimidinones by Biginelli reaction. Tetrahedron 66:3463–3471

    Article  Google Scholar 

  43. Kolosov MA, Orlov VD, Beloborodov DA, Dotsenko VV (2008) A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol Divers 13:5–25

    Article  Google Scholar 

  44. Gross WL, Hellmich B (2003) Arteriitis temporalis Horton (Riesenzellarteriitis) (Giant cell arteritis). Dtsch Med Wochenschr 128:2604–2607

    Article  CAS  Google Scholar 

  45. Foroughifar N, Mobinikhaledi A, Rabeie B, Jalili L (2013) DABCO as a mild and efficient catalyst for the synthesis of tetrahydropyrimidines. Rev Roum Chim 58:491–495

    CAS  Google Scholar 

  46. Polshettiwar V, Varma RS (2007) Biginelli reaction in aqueous medium: a greener and sustainable approach to substituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 48:7343–7346

    Article  CAS  Google Scholar 

  47. Kidwai M, Mohan R (2005) Green chemistry: an innovative technology. Found Chem 7:269–287

    Article  CAS  Google Scholar 

  48. Hegedüs A, Hell Z, Potor AA (2005) simple environmentally-friendly method for the selective synthesis of 1,5-benzodiazepine derivatives using zeolite catalyst. Catal Lett 105:229–232

    Article  Google Scholar 

  49. Salehi P, Dabiri M, Zolfigol MA, Fard MAB (2003) Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2 (1H)-ones. Tetrahedron Lett 44:2889–2891

    Article  CAS  Google Scholar 

  50. Mobinikhaledi A, Yazdanipour A, Ghashang M (2015) Green synthesis of 2-amino-7-hydroxy-4-aryl-4H -chromene-3-carbonitriles using ZnO nanoparticles prepared with mulberry leaf extract and ZnCl2. Turk J Chem 39:667–675

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Arak University research council for partial support of this research. Also the authors wish to thank Ms Somayeh Veyseh for her valuable help in this study for characterization of FE-SEM, EDX and XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Mobinikhaledi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobinikhaledi, A., Yazdanipour, A. & Ghashang, M. A green one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by novel Aurivillius nanostructures under solvent-free conditions. Reac Kinet Mech Cat 119, 511–522 (2016). https://doi.org/10.1007/s11144-016-1053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1053-2

Keywords

Navigation