Skip to main content

Advertisement

Log in

Effect of Al2O3 Support on Co-Based SiO2 Core–Shell Catalysts for Fischer–Tropsch Synthesis in 3D Printed SS Microchannel Microreactor

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Fischer Tropsch Synthesis (FTS) using syngas, a mixture of carbon monoxide (CO) and hydrogen (H2), obtained from renewable sources in the presence of a catalyst, is an excellent route to long-chain hydrocarbons and fuels. In this study, cobalt-mesoporous silica catalysts for FTS were prepared by two procedures-Co@SiO2 at 200 °C, and high pressure in an autoclave (AC), Co@SiO2 (One Pot or OP) at room temperature and 1 atm; the effect of Al2O3 on Co-SiO2 as Co@SiO2Al2O3 (One Pot or OP) core–shell catalysts was investigated for FTS at 20 bar in 3D printed stainless steel (SS) microchannel microreactors. These catalysts were characterized by different techniques such as N2 physisorption, XRD, SEM, TEM, H2-TPR, TGA–DSC, and XPS. The N2 physisorption studies show that the BET surface area of Co@SiO2 (Autoclave) is much higher than that of Co@SiO2 (One Pot), and the surface area decreases upon the addition of Al2O3 to yield Co@SiO2Al2O3 (OP) catalyst. In TPR analysis, the Co@SiO2 (OP) based catalyst had much higher reduction temperature than the Co@SiO2 (AC) catalyst. The XRD analysis shows that the Co@SiO2 (Autoclave) based catalyst is more crystalline when compared to other catalysts. The TEM and SEM images revealed agglomerations in the case of Co@SiO2 (OP) and Co@SiO2Al2O3 (OP) based catalysts. The TGA analyses of as-synthesized catalysts, before calcination, showed good stability of the catalysts. The oxidation state and binding energy of all catalysts, evaluated by XPS analysis, show a significant shift based on the catalyst preparation. All F-T reactions were carried out in a 3D-printed SS microreactor at 20 bars in the temperature range of 200–370 °C with H2/CO molar ratio of 2:1. The highest CO conversion for Co@SiO2 AC, Co@SiO2Al2O3 OP, Co@SiO2 OP are 85%, 45%, and 27% respectively. The highest selectivity to C4+ % was observed for Co@SiO2 AC in SS Microreactors in the temperature range of 200–300 °C, and the % selectivity for the C4+ follows the order: Co@SiO2AC > Co@SiO2Al2O3 OP > Co@SiO2 OP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Panda A, Kim E, Choi YN et al (2019) Phase controlled synthesis of Pt doped co nanoparticle composites using a metal-organic framework for Fischer–Tropsch catalysis. Catalysts 9:156. https://doi.org/10.3390/CATAL9020156

    Article  Google Scholar 

  2. DE484337C—Process for the catalytic production of multi-membered paraffinic hydrocarbons from carbon oxides and hydrogen - Google Patents. https://patents.google.com/patent/DE484337C/en. Accessed 5 Aug 2022

  3. Steynberg AP (2004) Chapter 1—introduction to Fischer-Tropsch technology. In: Steynberg A et al (eds) Fischer-Tropsch technology. Elsevier, pp 1–63

    Google Scholar 

  4. Jager B, Espinoza R (1995) Advances in low temperature Fischer-Tropsch synthesis. Catal Today 23:17–28. https://doi.org/10.1016/0920-5861(94)00136-P

    Article  CAS  Google Scholar 

  5. Sie ST (1998) Process development and scale up: IV. Case history of the development of a fischer-tropsch synthesis process. Rev Chem Eng 14:109–157. https://doi.org/10.1515/REVCE.1998.14.2.109/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  6. Bepari S, Stevens-Boyd R, Mohammad N et al (2021) Composite mesoporous SiO2-Al2O3 supported Fe, FeCo and FeRu catalysts for Fischer-Tropsch studies in a 3-D printed stainless-steel microreactor. Mater Today Proc 35:221–228. https://doi.org/10.1016/J.MATPR.2020.04.582

    Article  CAS  Google Scholar 

  7. Mohammad N, Abrokwah RY, Stevens-Boyd RG et al (2020) Fischer-Tropsch studies in a 3D-printed stainless steel microchannel microreactor coated with cobalt-based bimetallic-MCM-41 catalysts. Catal Today 358:303–315. https://doi.org/10.1016/J.CATTOD.2020.02.020

    Article  CAS  Google Scholar 

  8. Bepari S, Li X, Abrokwah R et al (2020) Co-Ru catalysts with different composite oxide supports for Fischer-Tropsch studies in 3D-printed stainless steel microreactors. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2020.117838

    Article  Google Scholar 

  9. Mohammad N, Kuila D, Aravamudhan S (2020) Catalyst and microreactor development for atmospheric and high-pressure Fischer-Tropsch synthesis. North Carolina Agricultural and Technical State University

    Google Scholar 

  10. Mohammad N, Basha OM, Bepari S et al (2021) Fischer-Tropsch synthesis in silicon and 3d printed stainless steel microchannel microreactors. Catal Clean Energy Environ Sustain. https://doi.org/10.1007/978-3-030-65021-6_14

    Article  Google Scholar 

  11. Cybulski A, Edvinsson R, Irandoust S, Andersson B (1993) Liquid-phase methanol synthesis: modelling of a monolithic reactor. Chem Eng Sci 48:3463–3478. https://doi.org/10.1016/0009-2509(93)85002-7

    Article  Google Scholar 

  12. Davis BH (2002) Overview of reactors for liquid phase Fischer-Tropsch synthesis. Catal Today 71:249–300. https://doi.org/10.1016/S0920-5861(01)00455-2

    Article  CAS  Google Scholar 

  13. Mohammad N, Bepari S, Aravamudhan S, Kuila D (2019) Kinetics of Fischer-Tropsch synthesis in a 3-D printed stainless steel microreactor using different mesoporous silica supported Co-Ru catalysts. Catalysts 9:872. https://doi.org/10.3390/CATAL9100872

    Article  CAS  Google Scholar 

  14. Das D, Samal DP, Mohammad N, Meikap BC (2017) Hydrodynamics of a multi-stage counter-current fluidized bed reactor with down-comer for amine impregnated activated carbon particle system. Adv Powder Technol 28:854–864. https://doi.org/10.1016/J.APT.2016.12.011

    Article  CAS  Google Scholar 

  15. Jager B (1997) Developments in Fischer-Tropsch technology. Stud Surf Sci Catal 107:219–224. https://doi.org/10.1016/S0167-2991(97)80338-2

    Article  CAS  Google Scholar 

  16. Mohammad N, Chukwudoro C, Bepari S et al (2022) Scale-up of high-pressure F-T synthesis in 3D printed stainless steel microchannel microreactors: Experiments and modeling. Catal Today 397–399:182–196. https://doi.org/10.1016/J.CATTOD.2021.09.038

    Article  Google Scholar 

  17. Schulz H (1999) Short history and present trends of Fischer-Tropsch synthesis. Appl Catal A Gen 186:3–12. https://doi.org/10.1016/S0926-860X(99)00160-X

    Article  CAS  Google Scholar 

  18. Singleton AH (1997) Advances make gas-to-liquids process competitive for remote locations. Oil Gas J 95

  19. Eisenberg B, Fiato RA, Mauldin CH et al (1998) Exxons advanced gas-to-liquids technology. Elsevier

    Google Scholar 

  20. Davis BH (1997) Fischer-Tropsch conversion of gas to liquid. Appl Catal A Gen 155:N4–N7. https://doi.org/10.1016/S0926-860X(97)80024-5

    Article  Google Scholar 

  21. Geng S, Mao ZS, Huang Q, Yang C (2021) Process intensification in pneumatically agitated slurry reactors. Engineering 7:304–325. https://doi.org/10.1016/J.ENG.2021.03.002

    Article  CAS  Google Scholar 

  22. Deshmane VG, Abrokwah RY, Kuila D (2015) Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. Int J Hydrogen Energy 40:10439–10452. https://doi.org/10.1016/j.ijhydene.2015.06.084

    Article  CAS  Google Scholar 

  23. Rouquerol F, Rouquerol J, Sing K et al (1999) Chapter 1—introduction. Adsorption by powders and porous solids. Elsevier, pp 1–26

    Google Scholar 

  24. García Blanco AA, Gabriela Amaya M, Eugenia Roca Jalil M et al (2011) Effect of the synthesis method on co-catalysts based on MCM-41 for the Fischer-Tropsch reaction. Top Catal. https://doi.org/10.1007/s11244-011-9638-5

    Article  Google Scholar 

  25. Ni Z, Kang S, Bai J et al (2017) Uniformity dispersive, anti-coking core@double-shell-structured Co@SiO2@C: effect of graphitic carbon modified interior pore-walls on C5+ selectivity in Fischer-Tropsch synthesis. J Colloid Interface Sci 505:325–331. https://doi.org/10.1016/J.JCIS.2017.05.096

    Article  CAS  PubMed  Google Scholar 

  26. González O, Pérez H, Navarro P et al (2009) Use of different mesostructured materials based on silica as cobalt supports for the Fischer-Tropsch synthesis. Catal Today 148:140–147. https://doi.org/10.1016/J.CATTOD.2009.03.030

    Article  Google Scholar 

  27. Xie R, Wang H, Gao P et al (2015) Core@shell Co3O4@C-m-SiO2 catalysts with inert C modified mesoporous channel for desired middle distillate. Appl Catal A Gen 492:93–99. https://doi.org/10.1016/J.APCATA.2014.12.023

    Article  CAS  Google Scholar 

  28. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  29. Dry ME (1991) (1990) Fischer-Tropsch synthesis over iron catalysts. Catal Lett 71(7):241–251. https://doi.org/10.1007/BF00764506

    Article  Google Scholar 

  30. Bartholomewa CH, Stoker MV, Manskerb L, Datyeb A (1999) Effects of pretreatment, reaction, and promoter on microphase structure and Fischer-Tropsch activity of precipitated iron catalysts. Elsevier

    Book  Google Scholar 

  31. Ernst B, Libs S, Chaumette P, Kiennemann A (1999) Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts. Appl Catal A Gen 186:145–168. https://doi.org/10.1016/S0926-860X(99)00170-2

    Article  CAS  Google Scholar 

  32. Saleh TA (2015) Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): from surface properties to sorption mechanism. New Pub Balaban 57:10730–10744. https://doi.org/10.1080/19443994.2015.1036784

    Article  CAS  Google Scholar 

  33. Monshi A, Foroughi MR, Monshi MR et al (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2:154–160. https://doi.org/10.4236/WJNSE.2012.23020

    Article  Google Scholar 

  34. Rotaru R, Savin M, Tudorachi N et al (2017) Ferromagnetic iron oxide-cellulose nanocomposites prepared by ultrasonication. Polym Chem. https://doi.org/10.1039/C7PY01587A

    Article  Google Scholar 

  35. Chu W, Chernavskii PA, Gengembre L et al (2007) Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts. J Catal 252:215–230. https://doi.org/10.1016/J.JCAT.2007.09.018

    Article  CAS  Google Scholar 

  36. Saleh TA (2015) Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environ Sci Pollut Res 22:16721–16731. https://doi.org/10.1007/S11356-015-4866-Z/FIGURES/13

    Article  CAS  Google Scholar 

  37. Saleh TA (2015) Mercury sorption by silica/carbon nanotubes and silica/activated carbon: a comparison study. J Water Supply Res Technol 64:892–903. https://doi.org/10.2166/AQUA.2015.050

    Article  Google Scholar 

  38. Lv X, Yuan S, Zhang Y et al (2019) Preparation of cyclonic Co3O4/Au/mesoporous SiO2 catalysts with core–shell structure for solvent-free oxidation of benzyl alcohol. J Taiwan Inst Chem Eng 102:448–455. https://doi.org/10.1016/J.JTICE.2019.06.013

    Article  CAS  Google Scholar 

  39. Li F, Wang M, Zhang J et al (2022) Sandwich-type Co core@shell nanocomposite (SiO2 @Co@CeO2): coke resistant catalyst toward CO2 reforming with ethanol. Appl Catal A Gen 638:118605. https://doi.org/10.1016/J.APCATA.2022.118605

    Article  CAS  Google Scholar 

  40. Mirzaei F, Rezaei M, Meshkani F, Fattah Z (2015) Carbon dioxide reforming of methane for syngas production over Co–MgO mixed oxide nanocatalysts. J Ind Eng Chem 21:662–667. https://doi.org/10.1016/J.JIEC.2014.03.034

    Article  CAS  Google Scholar 

  41. Cho JH, Park JH, Chang TS et al (2012) Reductive amination of 2-propanol to monoisopropylamine over Co/γ-Al2O3 catalysts. Appl Catal A Gen 417–418:313–319. https://doi.org/10.1016/J.APCATA.2012.01.011

    Article  Google Scholar 

  42. Rosynek MP, Polansky CA (1991) Effect of cobalt source on the reduction properties of silica-supported cobalt catalysts. Appl Catal 73:97–112. https://doi.org/10.1016/0166-9834(91)85115-C

    Article  CAS  Google Scholar 

  43. Li YP, Wang TJ, Wu CZ et al (2009) Effect of Ru addition to Co/SiO2/HZSM-5 catalysts on Fischer-Tropsch synthesis of gasoline-range hydrocarbons. Catal Commun 10:1868–1874. https://doi.org/10.1016/J.CATCOM.2009.06.021

    Article  CAS  Google Scholar 

  44. Trépanier M, Dalai AK, Abatzoglou N (2010) Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: role of nanoparticle size on reducibility, activity and selectivity in Fischer-Tropsch reactions. Appl Catal A Gen 374:79–86. https://doi.org/10.1016/J.APCATA.2009.11.029

    Article  Google Scholar 

  45. Park JY, Lee YJ, Karandikar PR et al (2012) Fischer-Tropsch catalysts deposited with size-controlled Co3O4 nanocrystals: Effect of Co particle size on catalytic activity and stability. Appl Catal A Gen 411–412:15–23. https://doi.org/10.1016/J.APCATA.2011.10.010

    Article  Google Scholar 

  46. Laboureur D, Glabeke G (2019) Gouriet JB (2019) Aluminum nanoparticles oxidation by TGA/DSC. J Therm Anal Calorim 1374(137):1199–1210. https://doi.org/10.1007/S10973-019-08058-2

    Article  Google Scholar 

  47. Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech 21:167

    PubMed  PubMed Central  Google Scholar 

  48. Pejova B, Isahi A, Najdoski M, Grozdanov I (2001) Fabrication and characterization of nanocrystalline cobalt oxide thin films. Mater Res Bull 36:161–170. https://doi.org/10.1016/S0025-5408(00)00479-7

    Article  CAS  Google Scholar 

  49. He T, Chen D, Jiao X (2004) Controlled synthesis of Co3O4 nanoparticles through oriented aggregation. Chem Mater 16:737–743. https://doi.org/10.1021/CM0303033/SUPPL_FILE/CM0303033_S.PDF

    Article  CAS  Google Scholar 

  50. Meng Y, Chen D, Jiao X (2006) Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites. J Phys Chem B 110:15212–15217. https://doi.org/10.1021/JP0626465/SUPPL_FILE/JP0626465SI20060618_045155.PDF

    Article  CAS  PubMed  Google Scholar 

  51. Ocana M, Gonzalez-Elipe AR (1999) Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds. Colloids Surfaces A Physicochem Eng Asp 157:315–324. https://doi.org/10.1016/S0927-7757(99)00088-6

    Article  CAS  Google Scholar 

  52. Gao Z, Zhao D, Cheng Q et al (2021) Mesoporous SiO2-encapsulated nano-Co3O4 catalyst for efficient CO oxidation. ChemCatChem 13:4010–4018. https://doi.org/10.1002/CCTC.202100602

    Article  CAS  Google Scholar 

  53. Wang D, Chen C, Wang J et al (2016) High thermal conductive core-shell structured Al2O3@Al composite supported cobalt catalyst for Fischer-Tropsch synthesis. Appl Catal A Gen 527:60–71. https://doi.org/10.1016/J.APCATA.2016.08.027

    Article  CAS  Google Scholar 

  54. Toshima N (2000) Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer. Pure Appl Chem 72:317–325. https://doi.org/10.1351/PAC200072010317/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  55. Mohammad N, Aravamudhan S, Kuila D (2022) Atomic layer deposition of cobalt catalyst for Fischer-Tropsch synthesis in silicon microchannel microreactor. Nanomaterials 12:2425. https://doi.org/10.3390/NANO12142425/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help from Dr. Kyle Nowlin for TEM studies at Joint School of Nanoscience and Nanoengineering, Dr. Shima Masoumi and Dr. Xin Li for SEM and XRD studies, Mr. Saif Hassan for TGA-DSC analyses, and Mr. Xiao Ma and Ms. Nourigheimasi Farnoush for XRD studies at Wake Forest University.

Funding

This work was performed at North Carolina A&T State University, the Department of Applied Science Technology, the Department of Chemistry, and the Joint School of Nanoscience and Nanoengineering, a member of Southeastern Nanotechnology Infrastructure Corridor (SENIC) supported by National Science Foundation, USA (Grant ECCS-1542174). This project was partially supported by funds provided by National Science Foundation-Center of Research Excellence in Science and Technology, USA ( HRD #1736173) and the University of North Carolina System-Research Opportunities Initiative(UNC-ROI 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Kuila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1464 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, M., Bepari, S., Abrokwah, R. et al. Effect of Al2O3 Support on Co-Based SiO2 Core–Shell Catalysts for Fischer–Tropsch Synthesis in 3D Printed SS Microchannel Microreactor. Top Catal 66, 477–497 (2023). https://doi.org/10.1007/s11244-022-01733-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01733-z

Keywords

Navigation