Skip to main content

Advertisement

Log in

Simulation Study of Ceramic Fibrous Structured Catalysts for CO2 Methanation—Enhancement of the Performance and Comparison to Pellet Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Fibrous catalysts have shown to enhance mass and heat transfer for fast and exothermic reactions. However, these catalysts can be limited by the pressure drop and achievable productivity, due to the flow rates that can be processed and the catalyst content in the reactor. This paper studies the effect of the geometry of fibrous catalysts on reactor performance by applying them to the reaction of CO2 methanation. A fixed-bed reactor model was used to simulate and study variations in fiber diameter and catalyst coating thickness, and their influence on pressure drop, productivity and reactor efficiency. A comparison basis to traditional pellet catalysts with different reactor configurations is established. Fibrous catalysts show superior reaction heat removal and temperature management, higher catalyst utilization, and smaller catalyst fractions to achieve the intended conversions. Smaller, more compact reactors can be designed thanks to their higher global efficiency. The results show the advantages and versatility of structured ceramic fibrous catalysts, as alternatives for process intensification, and to improve overall reactor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\({A}_{j}\) :

Pre-exponential factor of kinetic constant \({k}_{j}\), units from reference [20]

\({a}_{\mathrm{gs}}\) (m 1):

Gas–solid interfacial surface area per bed volume

\(c\) (mol m 3):

Concentration

\(d\) (m):

Diameter

\({E}_{\mathrm{reactor}}\) (1):

Reactor efficiency

\({\Delta E}_{\mathrm{ext}}\) (1):

Efficiency losses due to external mass transfer limitations

\({\Delta E}_{\mathrm{int}}\) (1):

Efficiency losses due to internal mass transfer limitations

\({\Delta E}_{\mathrm{T}}\) (1):

Efficiency losses due to heat transfer limitations

\(Ea\) (kJ mol 1):

Activation energy

\({G}_{\mathrm{mol}}\) (mol s 1 m 2):

Specific inlet molar flow rate

\(h\) (kW m 2 K 1):

Heat transfer coefficient

\(\Delta {H}_{\mathrm{r}}\) (kJ mol 1):

Reaction enthalpy

\({K}_{i}:\) :

Adsorption constant of species \(i\), units from reference [20]

\({K}_{j}:\) :

Equilibrium constant of reaction \(j\), units from reference [20]

\({k}_{j}:\) :

Reaction rate constant for reaction \(j\), units from reference [20]

\({L}_{\mathrm{R}}\) (m):

Reactor length

\(Nu\) (1):

Nusselt number, \(Nu=\frac{h d}{\lambda }\)

p (kPa):

Pressure

\(P{e}_{T}\) (1):

Thermal Péclet number, \(Pe=\frac{d u \rho {c}_{p}}{\lambda }\)

\(\Delta p\) (kPa):

Pressure drop

\(\Delta p/L\) (kPa m 1):

Pressure drop per unit of length

\({p}_{i}\) (kPa):

Partial pressure of species \(i\)

\(r\) (mol kgcat 1 s 1):

Reaction rate

\(R\) (kJ mol 1 K 1):

Universal gas constant

\(RA\) (1):

Relative activity

\(\overline{RA }\) (1):

Average relative activity

\(Re\) (1):

Reynolds number, \(Re=\frac{\rho u d}{\mu }\)

\(T\) (K):

Temperature

\({x}_{\mathrm{cat}}\) (1):

Catalyst volumetric fraction in the reactor

\({y}_{i}\) (1):

Molar fraction of species \(i\)

\(z\) (m):

Axial coordinate

\(\delta \) (m):

Layer thickness

\(\varepsilon \) (1):

Porosity

\(\eta \) (1):

Effectiveness factor

\(\lambda \) (kW m 1 K 1):

Thermal conductivity

\(\rho \) (kg m 3):

Density

\(\tau \) (1):

Tortuosity

0:

Reactor inlet

B:

Bed

cat:

Catalyst

charact:

Characteristic

eff:

Effective

ext:

External

g:

Gas

gs:

Gas–solid

\(i\) :

Species \(i\)

\(j\) :

Reaction \(j\)

max:

Maximum

p:

Particle

pore:

Pore

s:

Solid

tube:

Reactor tube

w:

Wall

References

  1. Matatov-Meytal Y, Sheintuch M (2002) Catalytic fibers and cloths. Appl Catal A 231:1–16. https://doi.org/10.1016/S0926-860X(01)00963-2

    Article  CAS  Google Scholar 

  2. Ma Y, Ma Y, Zhao Z, Hu X, Ye Z, Yao J, Buckley CE, Dong D (2019) Comparison of fibrous catalysts and monolithic catalysts for catalytic methane partial oxidation. Renew Energy 138:1010–1017. https://doi.org/10.1016/j.renene.2019.02.027

    Article  CAS  Google Scholar 

  3. Cuo Z, Deng Y, Li W, Peng S, Zhao F, Liu H, Chen Y (2018) Monolithic Mn/Ce-based catalyst of fibrous ceramic membrane for complete oxidation of benzene. Appl Surf Sci 456:594–601. https://doi.org/10.1016/j.apsusc.2018.06.207

    Article  CAS  Google Scholar 

  4. Jogdand S, Bedadur P, Torris A, Kharul UK, Vasireddy SN, Devi RN (2021) Tuning selectivity of CO2 hydrogenation using ceramic hollow fiber catalytic modules. React Chem Eng. https://doi.org/10.1039/d1re00076d

    Article  Google Scholar 

  5. Tuler FE, Banús ED, Zanuttini MA, Miró EE, Milt VG (2014) Ceramic papers as flexible structures for the development of novel diesel soot combustion catalysts. Chem Eng J 246:287–298. https://doi.org/10.1016/j.cej.2014.02.083

    Article  CAS  Google Scholar 

  6. Reichelt E, Jahn M (2017) Generalized correlations for mass transfer and pressure drop in fiber-based catalyst supports. Chem Eng J 325:655–664. https://doi.org/10.1016/j.cej.2017.05.119

    Article  CAS  Google Scholar 

  7. Zagoruiko AN, Lopatin SA, Mikenin PE, Pisarev DA, Zazhigalov SV, Baranov DV (2017) Novel structured catalytic systems—cartridges on the base of fibrous catalysts. Chem Eng Process 122:460–472. https://doi.org/10.1016/j.cep.2017.05.018

    Article  CAS  Google Scholar 

  8. Lee C, Il J, Shul PYG, Einaga H, Teraoka Y (2015) Ag supported on electrospun macro-structure CeO2 fibrous mats for diesel soot oxidation. Appl Catal B 174–175(185):192. https://doi.org/10.1016/j.apcatb.2015.03.008

    Article  CAS  Google Scholar 

  9. Fukahori S, Koga H, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst. Appl Catal A 310:138–144. https://doi.org/10.1016/j.apcata.2006.05.032

    Article  CAS  Google Scholar 

  10. Fukahori S, Koga H, Kitaoka T, Nakamura M, Wariishi H (2008) Steam reforming behavior of methanol using paper-structured catalysts: experimental and computational fluid dynamic analysis. Int J Hydrogen Energy 33:1661–1670. https://doi.org/10.1016/j.ijhydene.2007.12.063

    Article  CAS  Google Scholar 

  11. Saimura A, Kitaoka T (2016) Paper-structured catalysts with porous fiber networks for fischer-tropsch synthesis. J Korea TAPPI 48:32–45. https://doi.org/10.7584/JKTAPPI.2016.12.48.6.32

    Article  CAS  Google Scholar 

  12. Sánchez A, Milt VG, Miró EE, Güttel R (2020) Ceramic fiber-based structures as catalyst supports: a study on mass and heat transport behavior applied to CO2 methanation. Ind Eng Chem Res 59:16539–16552. https://doi.org/10.1021/acs.iecr.0c01997

    Article  CAS  Google Scholar 

  13. Sánchez A, Milt VG, Miró EE, Güttel R (2022) Impact of heat transport properties and configuration of ceramic fibrous catalyst structures for CO2 methanation: a simulation study. J Environ Chem Eng 10:107148. https://doi.org/10.1016/j.jece.2022.107148

    Article  CAS  Google Scholar 

  14. Ghaib K, Nitz K, Ben-Fares F-Z (2016) Chemical methanation of CO2: a review. ChemBioEng Rev 3:266–275. https://doi.org/10.1002/cben.201600022

    Article  Google Scholar 

  15. Thema M, Sterner M, Lenck T, Götz P (2016) Necessity and impact of power-to-gas on energy transition in Germany. Energy Procedia 99:392–400. https://doi.org/10.1016/j.egypro.2016.10.129

    Article  Google Scholar 

  16. Chauvy R, Dubois L, Lybaert P, Thomas D, De Weireld G (2020) Production of synthetic natural gas from industrial carbon dioxide. Appl Energy 260:114249. https://doi.org/10.1016/j.apenergy.2019.114249

    Article  CAS  Google Scholar 

  17. Cybulski A, Eigenberger G, Stankiewicz A (1997) Operational and structural nonidealities in modeling and design of multitubular catalytic reactors. Ind Eng Chem Res 36:3140–3148. https://doi.org/10.1021/ie960596s

    Article  CAS  Google Scholar 

  18. Eigenberger G, Ruppel W (2012) Catalytic fixed-bed reactors. Ullmann’s Encycl Ind Chem. Wiley-VCH, Weinheim

    Google Scholar 

  19. Schlereth D, Hinrichsen O (2014) A fixed-bed reactor modeling study on the methanation of CO2. Chem Eng Res Des 92:702–712. https://doi.org/10.1016/j.cherd.2013.11.014

    Article  CAS  Google Scholar 

  20. Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35:88–96. https://doi.org/10.1002/aic.690350109

    Article  CAS  Google Scholar 

  21. Güttel R, Turek T (2016) Improvement of fischer-tropsch synthesis through structuring on different scales. Energy Technol 4:44–54. https://doi.org/10.1002/ente.201500257

    Article  Google Scholar 

  22. Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368. https://doi.org/10.1039/c2ra00632d

    Article  CAS  Google Scholar 

  23. Massa F, Coppola A, Scala F (2020) A thermodynamic study of sorption-enhanced CO2 methanation at low pressure. J CO2 Util 35:176–184. https://doi.org/10.1016/j.jcou.2019.09.014

    Article  CAS  Google Scholar 

  24. Dietrich B (2013) Heat transfer coefficients for solid ceramic sponges—experimental results and correlation. Int J Heat Mass Transf 61:627–637. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.019

    Article  Google Scholar 

  25. Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759–22776. https://doi.org/10.1039/c4ra16114a

    Article  CAS  Google Scholar 

  26. Woods DR (2007) Rules of thumb in engineering practice. Wiley-VCH, Weinheim

    Book  Google Scholar 

  27. Wallenstein M, Kind M, Dietrich B (2014) Radial two-phase thermal conductivity and wall heat transfer coefficient of ceramic sponges—experimental results and correlation. Int J Heat Mass Transf 79:486–495. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.003

    Article  Google Scholar 

  28. Kashid MN, Renken A, Kiwi-Minsker L (2014) Microstructured devices for chemical processing. Wiley-VCH, Weinheim

    Book  Google Scholar 

  29. Kaiser S, Reichelt E, Gebhardt SE, Jahn M, Michaelis A (2014) Porous perovskite fibers—preparation by wet phase inversion spinning and catalytic activity. Chem Eng Technol 37:1146–1154. https://doi.org/10.1002/ceat.201400097

    Article  CAS  Google Scholar 

  30. Tuler FE, Gaigneaux EM, Miró EE, Milt VG, Debecker DP (2015) Catalytic ceramic papers for diesel soot oxidation: a spray method for enhanced performance. Catal Commun 72:116–120. https://doi.org/10.1016/j.catcom.2015.09.013

    Article  CAS  Google Scholar 

  31. Sacco N, Banús E, Milt V, Miró E, Bortolozzi JP (2020) Catalytic paper filters for diesel soot abatement: studies at laboratory and bench scales. Emiss Control Sci Technol 6:450–461. https://doi.org/10.1007/s40825-020-00169-9

    Article  CAS  Google Scholar 

  32. Ahlström-Silversand AF, Odenbrand CUI (1997) Thermally sprayed wire-mesh catalysts for the purification of flue gases from small-scale combustion of bio-fuel catalyst preparation and activity studies. Appl Catal A. https://doi.org/10.1016/S0926-860X(96)00329-8

    Article  Google Scholar 

  33. Garbarino G, Bellotti D, Riani P, Magistri L, Busca G (2015) Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: catalysts activation, behaviour and stability. Int J Hydrogen Energy 40:9171–9182. https://doi.org/10.1016/j.ijhydene.2015.05.059

    Article  CAS  Google Scholar 

  34. Alrafei B, Polaert I, Ledoux A, Azzolina-Jury F (2020) Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation. Catal Today 346:23–33. https://doi.org/10.1016/j.cattod.2019.03.026

    Article  CAS  Google Scholar 

  35. Woodside W, Messmer JH (1961) Thermal conductivity of porous media. I. Unconsolidated sands. J Appl Phys 32:1688–1699. https://doi.org/10.1063/1.1728419

    Article  Google Scholar 

  36. Bremer J, Sundmacher K (2021) Novel multiplicity and stability criteria for non-isothermal fixed-bed reactors. Front Energy Res 8:1–19. https://doi.org/10.3389/fenrg.2020.549298

    Article  Google Scholar 

  37. Fendt S, Buttler A, Gaderer M, Spliethoff H (2016) Comparison of synthetic natural gas production pathways for the storage of renewable energy. WIREs Energy Environ 5:327–350. https://doi.org/10.1002/wene.189

    Article  CAS  Google Scholar 

  38. Molino A, Nanna F, Ding Y, Bikson B, Braccio G (2013) Biomethane production by anaerobic digestion of organic waste. Fuel 103:1003–1009. https://doi.org/10.1016/j.fuel.2012.07.070

    Article  CAS  Google Scholar 

  39. Meyer D, Schumacher J, Friedland J, Güttel R (2020) Hydrogenation of CO/CO2 mixtures on nickel catalysts: kinetics and flexibility for nickel catalysts. Ind Eng Chem Res 59:14668–14678. https://doi.org/10.1021/acs.iecr.0c02072

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support received from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Grant PICT 2016 N°2710), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Grant PIP 2015), and Deutscher Akademischer Austauschdienst (DAAD, CUAA-DAHZ, Grant D/14/07554).

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization, methodology, investigation, visualization, writing—original draft preparation. VGM: Conceptualization, writing—review & editing, supervision, EEM: Conceptualization, writing—review & editing, supervision. RG: Conceptualization, writing—review & editing, supervision.

Corresponding author

Correspondence to Agustina Sánchez.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 845 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, A., Milt, V.G., Miró, E.E. et al. Simulation Study of Ceramic Fibrous Structured Catalysts for CO2 Methanation—Enhancement of the Performance and Comparison to Pellet Catalysts. Top Catal 65, 1317–1330 (2022). https://doi.org/10.1007/s11244-022-01675-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01675-6

Keywords

Navigation