Skip to main content
Log in

Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Biogenic synthesis of magnetic palladium decorated over reduced graphene oxide (Pd-rGO@Fe3O4) nanoparticles (NPs) were carried out using Piper betle petiole extract. The reduction of palladium (+ 2) to palladium (0) oxidation state, graphene oxide to reduced graphene oxide carried out by the phytochemicals present in the petiole extract which aids in reduction as well as stabilizing the formed (Pd-rGO@Fe3O4) nanoparticles. Liquid chromatography with mass spectrum (LC-MS) as detector was used to identify the major phytochemicals present in the Piper betle petiole extract. The reduced graphene oxide creates a mesoporous structure for the palladium metal to deposit along with the magnetite which assist in easy recovery of the formed nanoparticles from the reaction course. The synthesized Pd-rGO@Fe3O4 NPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), and Ultraviolet-visible spectroscopy (UV-vis). Thermal stability of the Pd-rGO@Fe3O4 NPs were carried out using Thermo Gravimetric Analysis (TGA). The synthesized Pd-rGO@Fe3O4 NPs used as hybrid nanocatalyst in Suzuki − Miyaura coupling reaction of biphenyl compounds. The synthesized biphenyl compounds were characterized by Proton Nuclear Magnetic Resonance Spectroscopy (1 H NMR). The heterogeneous hybrid nanocatalyst Pd-rGO@Fe3O4 NPs recovered, isolated using external magnet and was successfully used for three cycles in C-C coupling reaction without any significant loss in catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Adimule, V., Yallur, B.C., Bhowmik, D. et al. Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures. J Mater Sci: Mater Electron 32, 12164–12181 (2021). https://doi.org/10.1007/s10854-021-05845-2

  2. Yilmaz B, Müller U (2009) Catalytic Applications of Zeolites in Chemical Industry. Top Catal 52:888–895

    Article  CAS  Google Scholar 

  3. Stefania, Albonetti Rita Mazzoni and Fabrizio Cavani, CHAPTER 1: Homogeneous, Heterogeneous and Nanocatalysis in Transition Metal Catalysis in Aerobic Alcohol Oxidation, 2014:1–39

  4. Adimule, V., Revaigh, M.G. & Adarsha, H.J. Synthesis and Fabrication of Y-Doped ZnO Nanoparticles and Their Application as a Gas Sensor for the Detection of Ammonia. J. of Materi Eng and Perform 29, 4586–4596 (2020). https://doi.org/10.1007/s11665-020-04979-4

    Article  CAS  Google Scholar 

  5. Cui X, Li W, Ryabchuk P, Junge K, Beller M (2018) Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat Catal 1(6):385–397

    Article  CAS  Google Scholar 

  6. Fechete I, Wang Y, Védrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189(1):2–27

    Article  CAS  Google Scholar 

  7. Adimule V, R. G. Revaiah, S. S. Nandi, A. H. Jagadeesha, Synthesis, Characterization of Cr Doped TeO2 Nanostructures and its Application as EGFET pH Sensor Electroanalysis 2021, 33, 579. https://doi.org/10.1002/elan.202060329

  8. Adimule, V., Yallur, B.C., Bhowmik, D. et al. Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for Low-Cost Optoelectronics Applications. Trans. Electr. Electron. Mater. 23, 288–303 (2022). https://doi.org/10.1007/s42341-021-00348-7

  9. Nandi SS, Suryavanshi A, Adimule V, &cYallur BC (2020) Fabrication of novel rare earth doped ionic perovskite nanomaterials of Sr0.5, Cu0.4, Y0.1 and Sr0.5 and Mn0.5 for high power efficient energy harvesting photovoltaic cells. AIP Conference Proceedings 2274, 020005 (2020); https://doi.org/10.1063/5.0022450

  10. Adimule V, Yallur BC, Challa M, Joshi RS (2021) Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon, 7 (12), 2021, e08541, e08541. https://doi.org/10.1016/j.heliyon.2021.e08541

  11. Adimule V, Bhowmik D, Suryavanshi A (2019) Synthesis, characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties. IOP Conference Series: Materials Science and Engineering. IOP Conf. Ser.: Mater. Sci. Eng. 577 012032. https://iopscience.iop.org/article/10.1088/1757-899X/577/1/012032/meta

  12. Adimule, V., Yallur, B., Gowda, A. (2022). 'Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures’, Analytical and Bioanalytical Electrochemistry, 14(1), pp. 1-17.

  13. W. Dong, M. Ou, D. Qu, X. Shi, M. Guo, G. Liu, S. Wang, F. Wang, Y. Chen, Rare-Earth Metal Yttrium-Modified Composite Metal Oxide Catalysts for High Selectivity Synthesis of Biomass-Derived Lactic Acid from Cellulose ChemCatChem 2022, 14, e202200265. https://doi.org/10.1002/cctc.202200265

  14. Adimule, V., Vageesha, P., Bagihalli, G., Bowmik, D., Adarsha, H.J. (2019). Synthesis, Characterization of Hybrid Nanomaterials of Strontium, Yttrium, Copper Doped with Indole Schiff Base Derivatives Possessing Dielectric and Semiconductor Properties. In: Sridhar, V., Padma, M., Rao, K. (eds) Emerging Research in Electronics, Computer Science and Technology. Lecture Notes in Electrical Engineering, vol 545. Springer, Singapore. https://doi.org/10.1007/978-981-13-5802-9_97

  15. Adimule VM, Manjunath JG, Rajendrachari S (2021) Optical morphological and dielectric properties of novel Zr 05 Sr 04 Gd2o3 nanostructure for capacitor applications Физика и технологииперспективныхматериалов–2021

  16. Adimule V, Bhowmik D, Gowda AH (2021) Morphology, Characterization, and Gas Sensor Properties of Sr Doped WO3 Thin Film Nanostructures. Macromolecular Symposia 400(1):2100065.  https://doi.org/10.1002/masy.202100065

    Article  CAS  Google Scholar 

  17. Nandi SS, Suryavanshi A, Adimule V, Maradur SR (2020) Semiconductor current-voltage characteristics of some novel perovskite ionic nanocomposites of Sr0. 5, Cu0. 4, Y0. 1 and Sr0. 5, Mn0. 5 and their electronic sensor applications. AIP Conference Proceedings 2274, 020006 (2020); https://doi.org/10.1063/5.0022453

  18. Adimule V, Yallur BC, Batakurki SR, Gowda AHJ(2021) Microwave Assisted Synthesis of Cr doped Gd2O3 Nanostructures and Investigation on Morphology, Optical, Photoluminescence Properties. Nanoscience and Technology: An International Journal DOI: 10.1615/Nano Sci.Technol. Int. J.:039643. https://doi.org/10.1615/NanoSciTechnolIntJ.2021039643

  19. AdimuleV, Banakar P, Naik VH (2018) Preparation, characterization and optical properties of chromium oxide and yttrium nanocomposites. AIP Conference Proceedings 1989, 020001 (2018); https://doi.org/10.1063/1.5047677

  20. Pai M, M., Batakurki, S.R., Yallur, B.C. et al. Green Synthesis of Chitosan Supported Magnetic Palladium Nanoparticles Using Epiphyllum oxypetalum Leaf Extract (Pd-CsEo/Fe3O4 NPs) as Hybrid Nanocatalyst for Suzuki–Miyaura Coupling of Thiophene. Top Catal (2022). https://doi.org/10.1007/s11244-022-01576-8

    Article  CAS  Google Scholar 

  21. V.M. Adimule, D. Bowmik, H. J. Adarsha. A facile synthesis of Cr doped WO3 nanocomposites and its effect in enhanced current-voltage and impedance characteristics of thin films. Lett. Mater., 2020, 10(4) 481-485. https://doi.org/10.22226/2410-3535-2020-4-481-485

    Article  Google Scholar 

  22. Keri, R.S., Adimule, V., Kendrekar, P. et al. The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top Catal (2022). https://doi.org/10.1007/s11244-022-01562-0

    CAS  Google Scholar 

  23. Adimule, V., Yallur, B.C., Kamat, V. et al. Characterization studies of novel series of cobalt (II), nickel (II) and copper (II) complexes: DNA binding and antibacterial activity. J. Pharm. Investig. 51, 347–359 (2021). https://doi.org/10.1007/s40005-021-00524-0

    Article  CAS  Google Scholar 

  24. Adimule, V., Nandi, S.S., Yallur, B.C. et al. Optical, Structural and Photoluminescence Properties of Gd x SrO: CdO Nanostructures Synthesized by Co Precipitation Method. J Fluoresc 31, 487–499 (2021). https://doi.org/10.1007/s10895-021-02683-7

    Article  CAS  PubMed  Google Scholar 

  25. Adimule V, Nandi SS, Yallur BC, Bhowmik D, Jagadeesha AH (2021) Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics. Mater Today Chem 20:100438. https://doi.org/10.1016/j.mtchem.2021.100438

    Article  CAS  Google Scholar 

  26. Adimule V (2018) Synthesis characterization of Sr-Gd nanocomposites doped with zirconium possessing electrical and optical properties. AIP Conference Proceedings 1989, 030001 (2018); https://doi.org/10.1063/1.5047719

  27. Adimule, V., Nandi, S.S., Jagadeesha Gowda, A.H. (2021). Enhanced Power Conversion Efficiency of the P3BT (Poly-3-Butyl Thiophene) Doped Nanocomposites of Gd-TiO3 as Working Electrode. In: Pawar, P.M., Balasubramaniam, R., Ronge, B.P., Salunkhe, S.B., Vibhute, A.S., Melinamath, B. (eds) Techno-Societal 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-69925-3_6

  28. Adimule, V., Nandi, S.S., Jagadeesha Gowda, A.H. (2021). A Facile Synthesis of Gadolinium Titanate (GdTiO3) Nanomaterial and Its Effect in Enhanced Current-Voltage Characteristics of Thin Films. In: Pawar, P.M., Balasubramaniam, R., Ronge, B.P., Salunkhe, S.B., Vibhute, A.S., Melinamath, B. (eds) Techno-Societal 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-69925-3_7

  29. Adimule V, Suryavanshi A, Yallur BC, Nandi SS (2020) A Facile Synthesis of poly (3-octyl thiophene): ni0 4sr0 6tio3 hybrid nanocomposites for solar cell applications. Macromolecular Symposia 392(1):2000001–2000007.  https://doi.org/10.1002/masy.202000001

    Article  CAS  Google Scholar 

  30. Suryavanshi A, Adimule V, Nandi SS. Synthesis, Impedance, and Current-Voltage Characteristics of Strontium-Manganese Titanate Hybrid Nanoparticles. Macromol. Symp. 2020, 392, 2000002. https://doi.org/10.1002/masy.202000002

    Article  CAS  Google Scholar 

  31. NandiSS, Suryavanshi A, Adimule V, Yallur BC (2020) Supercapacitor characteristics of novel rare-earth perovskite nanomaterials of Sr0.5, Cu0.4, Y0.1. AIP Conference Proceedings 2274, 020007 (2020); https://doi.org/10.1063/5.0022454

  32. Pai MM, Batakurki SR, Yallur BC et al (2022) Green Synthesis of Chitosan Supported Magnetic Palladium Nanoparticles Using Epiphyllum oxypetalum Leaf Extract (Pd-CsEo/Fe3O4 NPs) as Hybrid Nanocatalyst for Suzuki–Miyaura Coupling of Thiophene. Topics in Catalysis (2022). https://doi.org/10.1007/s11244-022-01576-8

  33. Lázaro-Navas S, Prashar S, Fajardo M, Gómez-Ruiz S (2015) Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles. J Nanopart Res 17(2):1–14

    Article  CAS  Google Scholar 

  34. Biffis A, Centomo P, Del Zotto A, Zecca M (2018) Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem Rev 118(4):2249–2295

    Article  CAS  PubMed  Google Scholar 

  35. Adimule, V.M., Nandi, S.S., Kerur, S.S. et al. Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review. Top Catal (2022). https://doi.org/10.1007/s11244-022-01571-z

    Article  CAS  Google Scholar 

  36. Astruc D (2007) Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon – carbon coupling precatalysts: A unifying view. Inorg Chem 46(6):1884–1894

    Article  CAS  PubMed  Google Scholar 

  37. Adimule, V., Kerur, S.S., Chinnam, S. et al. Guar Gum and its Nanocomposites as Prospective Materials for Miscellaneous Applications: A Short Review. Top Catal (2022). https://doi.org/10.1007/s11244-022-01587-5

    Article  CAS  Google Scholar 

  38. Lipshutz BH, Abela AR, Bošković ŽV, Nishikata T, Duplais C, Krasovskiy A (2010) “Greening up” cross-coupling chemistry. Top Catal 53(15):985–990

    Article  CAS  Google Scholar 

  39. Wagner M, Köhler K, Djakovitch L, Weinkauf S, Hagen V, Muhler M (2000) Heck reactions catalyzed by oxide-supported palladium–structure–activity relationships. Top Catal 13(3):319–326

    Article  CAS  Google Scholar 

  40. González-Sebastián L, Morales-Morales D (2019) Cross-coupling reactions catalysed by palladium pincer complexes. A review of recent advances. J Organomet Chem 893:39–51

    Article  CAS  Google Scholar 

  41. Maya Pai, M., Yallur, B.C., Batakurki, S.R. et al. Synthesis and Catalytic Activity of Heterogenous Hybrid Nanocatalyst of Copper/Palladium MOF, RIT 62-Cu/Pd for Stille Polycondensation of Thieno[2,3-b]pyrrol-5-One Derivatives. Top Catal (2022). https://doi.org/10.1007/s11244-022-01618-1

    Article  CAS  Google Scholar 

  42. Shakil Hussain SM, Kamal MS, Hossain MK (2019) Recent developments in nanostructured palladium and other metal catalysts for organic transformation. Journal of Nanomaterials, 2019

  43. Mydosh JA, Budnick JI, Kawatra MP, Skalski S (1968) Magnetic ordering in palladium-iron alloys. Phys Rev Lett 21(18):1346

    Article  CAS  Google Scholar 

  44. Nandi SS, Kadapure SA, Kadapure P, Shet A. Overview on catalyst and co-solvents for sustainable biodiesel production Proceedings of the Institution of Civil Engineers - Energy 0 0:0, 1-9. https://doi.org/10.1680/jener.21.00092

    Article  CAS  Google Scholar 

  45. Cham Chandra H, Kumari P, Bontempi E, Yadav S (2020) Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol 24:101518

    Article  Google Scholar 

  46. Sharmila G, Haries S, Fathima MF, Geetha S, Kumar NM, Muthukumaran C (2017) Enhanced catalytic and antibacterial activities of phytosynthesized palladium nanoparticles using Santalum album leaf extract. Powder Technol 320:22–26

    Article  CAS  Google Scholar 

  47. Keri, R.S., Adimule, V., Kendrekar, P. et al. The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top Catal (2022). https://doi.org/10.1007/s11244-022-01562-0

    Article  CAS  Google Scholar 

  48. Mallikarjuna K, Reddy LV, Al-Rasheed S, Mohammed A, Gedi S, Kim WK (2021) Green synthesis of reduced graphene oxide-supported palladium nanoparticles by Coleus amboinicus and its enhanced catalytic efficiency and antibacterial activity. Crystals 11(2):134

    Article  CAS  Google Scholar 

  49. Adimule V, Banakar P, Adarsh KS, Naik V. Preparation, characterization and optical properties of chromium oxide and yttrium nanocomposites AIP Conference Proceedings 1989, 020001 (2018); https://doi.org/10.1063/1.5047677

    Article  CAS  Google Scholar 

  50. Adimule V, Nandi SS, Yallur BC, Shaikh N (2021) CNT/graphene-assisted flexible thin-film preparation for stretchable electronics and superconductors. CRC Press, New York, pp 89–103. Sensors for stretchable electronics in nanotechnology

    Google Scholar 

  51. Shaikh, N.M., Adimule, V., Bagihalli, G.B. et al. A Novel Mixed Ag–Pd Nanoparticles Supported on SBA Silica Through [DMAP-TMSP-DABCO]OH Basic Ionic Liquid for Suzuki Coupling Reaction. Top Catal (2022). https://doi.org/10.1007/s11244-022-01586-6

  52. Shah SK, Garg G, Jhade D, Patel N (2016) Piper betle: phytochemical, pharmacological and nutritional value in health management. Int J Pharm Sci Rev Res 38(2):181–189

    CAS  Google Scholar 

  53. Vinayak, A., M. Sudha, A. H. Jaadeesha, P. Kulkarni, K. S. Lalita, and P. K. Rao. "Synthesis, characterization of some novel 1, 3, 4-oxadiazole compounds containing 8-hydroxy quinolone moiety as potential antibacterial and anticancer agents." Int J Pharm Res 4, no. 4 (2014): 180-185.

    Google Scholar 

  54. Santhakumari P, Prakasam A, Pugalendi KV (2006) Antihyperglycemic activity of Piper betle leaf on streptozotocin-induced diabetic rats. J Med Food 9(1):108–112

    Article  CAS  PubMed  Google Scholar 

  55. Vinayak, A., M. Sudha, K. Rao, and K. S. Lalita. "synthesis of n-{[5-(2, 4-dichlorophenyl)-1, 3, 4-oxadiazol-2-yl] methyl} amine derivatives as anticancer precursors." Int J Med Chem Anal 4 (2014): 231-235.

    Article  CAS  Google Scholar 

  56. Atarod M, Nasrollahzadeh M, Sajadi SM (2016) Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withaniacoagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J Colloid Interface Sci 465:249–258

    Article  CAS  PubMed  Google Scholar 

  57. Adimule V, Nandi SS, Yallur BC, Shaikh N. CNT/graphene-assisted flexible thin-film preparation for stretchable electronics and superconductors. Sensors for stretchable electronics in nanotechnology. 89-103. CRC Press. (1st Edition). 2021. https://doi.org/10.1201/9781003123781

    Article  CAS  Google Scholar 

  58. Purba RAP, Paengkoum P (2019) Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J Appl Pharm Sci 9(5):33–39

    Article  CAS  Google Scholar 

  59. Ismail E, Khenfouch M, Dhlamini M, Dube S, &Maaza M (2017) Green palladium and palladium oxide nanoparticles synthesized via Aspalathus linearis natural extract. J Alloys Compd 695:3632–3638

    Article  CAS  Google Scholar 

  60. Shahwan T, Abu SirriahS, Nairat M, BoyacE, Ero˘glu AE, Scott TB, Hallam Green KR (2011) Synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  61. A. Vinayak, K.S. Adarsh, Characterization and microbial resistance properties of titanium dioxide nanoparticles in food products, J. Nanosci. Tech. 3(1) (2017) 240–241

    Article  CAS  Google Scholar 

  62. Sampaio MJ, Silva CG, Silva AMT, Martínez LMP, Han C, Torres SM, Figueiredo JL, Dionysiou DD, Faria JL (2015) Carbon-based TiO2 materials for the degradation of Microcystin-LA. Environmental, Applied Catalysis B, pp 74–82

    Google Scholar 

  63. Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung JS, Kim EJ, Hur SH (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170:226–232

    Article  CAS  Google Scholar 

  64. Paulchamy G, Arthi BD, Lignesh (2015) Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. J Nanomed Nanatechnol 6(1). DOI: https://doi.org/10.4172/2157-7439.1000253

  65. Adimule V, Suryavanshi A, Nandi SS. Synthesis, characterization and impedance studies of novel nanocomposites of gadolinium titanate. IOP Conf. Ser.: Mater. Sci. Eng. 872 012099. 2020. https://iopscience.iop.org/article/10.1088/1757-899X/872/1/012099/meta

    Article  CAS  Google Scholar 

  66. Veisi H, Ozturk T, Karmakar B, Tamoradi T, &Hemmati S(2020)In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction.Carbohydrate Polymers235:115966

  67. Adimule, V., Nandi, S.S., Yallur, B.C. (2022). Devices and Sensors Based on Additively Manufactured Shape-Memory of Hybrid Nanocomposites. In: Maurya, M.R., Sadasivuni, K.K., Cabibihan, JJ., Ahmad, S., Kazim, S. (eds) Shape Memory Composites Based on Polymers and Metals for 4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-030-94114-7_15

    Article  CAS  Google Scholar 

  68. Qiu B, Li Q, Shen B, Xing M (2016) Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl Catal B: 183:216–223

    Article  CAS  Google Scholar 

  69. Adimule V, Yallur BC, Gowda AHJ, Chapter 14 - Advanced sensors based on carbon nanomaterials, Editor(s): Jamballi G. Manjunatha, Chaudhery Mustansar Hussain, Carbon Nanomaterials-Based Sensors, Elsevier, 2022, 259-268. https://doi.org/10.1016/B978-0-323-91174-0.00004-4.

    Article  CAS  PubMed  Google Scholar 

  70. Teffu Daniel M, Morongwa E, Ramoroka MD, Makhafola K, Makgopa TC, Maponya OA, Seerane, Mpitloane J, Hato, Emmanuel I, Iwuoha, Kwena D, Modibane (2022) “High-performance supercabattery based on reduced graphene oxide/metal organic framework nanocomposite decorated with palladium nanoparticles. " Electrochim Acta 412:140136

    Article  CAS  Google Scholar 

  71. Adimule, Vinayak. "International Journal of Pharmacological Research www. ssjournals. com." IJPR 4, no. 4 (2014): 180.

    Article  Google Scholar 

  72. Lv JJ, Wang LSS, Mei AJ, Feng LP, Chen JJ, Chen Z (2014) One-pot synthesis of monodisperse palladium–copper nanocrystals supported on reduced graphene oxide nanosheets with improved catalytic activity and methanol tolerance for oxygen reduction reaction. J Power Sources 269:104–110

    Article  CAS  Google Scholar 

  73. Park OK, Choi YM, Hwang JY, Yang CM, Kim TW, You NH&, Goh M(2013) Defect healing of reduced graphene oxide via intramolecular cross-dehydrogenative coupling. Nanotechnology24(18):185604

  74. Zheng X, Zhao J, Xu M, Zeng M (2020) Preparation of porous chitosan/reduced graphene oxide microspheres supported Pd nanoparticles catalysts for Heck coupling reactions. Carbohydr Polym 230:115583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to M. S. Ramaiah University of Applied Sciences (MSRUAS), Bangalore for providing basic facilities. Authors are thankful to KLE Dr. M S Sheshgiri college of Engineering and Technology for encouragement and partial financial support. Authors also acknowledge their thankfulness to Centre for Nano and Soft Materials, Bangalore, Ramaiah Institute of Technology (RIT), Bangalore and IISc, Bangalore for providing the characterization facilities.

Funding

All authors declare that they have not received any funding from any source, organization or institutions.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Vinayak Adimule has crafted the manuscript. Dr. Basappa. C. Yallur has contributed for the characterization of the nanocatalyst. Mrs. Maya Pai M has carried the synthesis and characterization of Coupling reactions. Dr. Sheetal R. Batakurki has designed the work, carried out spectral characterization and contributed to draft the manuscript. Dr. Santosh Nandi has prepared the hybrid nanocatalyst.

Corresponding authors

Correspondence to Sheetal R Batakurki or Santosh S Nandi.

Ethics declarations

Conflict of interest

All the authors declared that they do not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimule, V., Yallur, B.C., Pai, M.M. et al. Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Top Catal (2022). https://doi.org/10.1007/s11244-022-01672-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-022-01672-9

Keywords

Navigation