Skip to main content
Log in

Mn(III)-Porphyrin Immobilized on the Graphene Oxide-Magnetite Nanocomposite as an Efficient Heterogeneous Catalyst for the Epoxidation of Alkenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this research, β-tetra-brominated meso-tetraphenylporphyrinatomanganese(III) acetate [MnTPPBr4(OAc)] (MnPor) was anchored onto a magnetite imidazole-modified graphene oxide nanosheet (Fe3O4.GO.Im). The obtained catalyst (Fe3O4.GO.Im@MnPor) was characterized through Fourier transform infrared (FT-IR) and diffuse reflectance UV–Visible spectrophotometry (DR UV–Vis), powder X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA) and atomic absorption spectroscopy. The characterization was performed to determine the amount of manganese porphyrin loaded on the GO support. The new immobilized catalyst was employed for the efficient epoxidation of different alkenes with urea hydrogen peroxide (UHP) and acetic acid (HOAc) as oxidant activators under mild conditions. Olefins were oxidized efficiently to their corresponding epoxide with 63–100% selectivity in the presence of Fe3O4.GO.Im@MnPor. Moreover, an remarkable turnover frequency (93) was achieved for the oxidation of α-pinene. The graphene oxide-bound Mn-porphyrin was recovered from the reaction mixture by magnetic decantation and reused several times.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Talsi EP, Bryliakov KP (2012) Chemo- and stereoselective CH oxidations and epoxidations/cis-dihydroxylations with H2O2, catalyzed by non-heme iron and manganese complexes. Coord Chem Rev Coord Chem Rev 256:1418–1434

    Article  CAS  Google Scholar 

  2. Weissermel K, Arpe H-J, Lindley CR, Hawkins S (1997) Industrial organic chemistry. Wiley, Hoboken

    Book  Google Scholar 

  3. da Silva DC, DeFreitas-Silva G, do Nascimento E, Reboucas JS, Barbeira PJS, de Carvalho M et al (2008) Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: the effect of the degree of beta-bromination. J Inorg Biochem 102:1932–1941

    Article  PubMed  CAS  Google Scholar 

  4. Pinto VHA, Falcão NK, Bueno-Janice JC, Spasojević I, Batinić-Haberle I, Rebouças JS (2016) Cytochrome P450-like biomimetic oxidation catalysts based on Mn porphyrins as redox modulators. Redox-active therapeutics. Springer, Cham, pp 213–243

    Chapter  Google Scholar 

  5. Hajian R, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I (2016) [Mn(TPPS)] immobilized on ionic liquid-modified silica as a heterogeneous and reusable catalyst for epoxidation of alkenes with NaIO4 under ultrasonic irradiation. J Iran Chem Soc 13:1061–1067

    Article  CAS  Google Scholar 

  6. Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Hajian R (2010) Efficient epoxidation of alkenes with sodium periodate catalyzed by manganese porphyrins in ionic liquid: investigation of catalyst reusability. Inorg Chem Commun 13:1501–1503

    Article  CAS  Google Scholar 

  7. Moghadam M, Mohammadpoor-Baltork I, Tangestaninejad S, Mirkhani V, Kargar H, Zeini-Isfahani N (2009) Manganese(III) porphyrin supported on multi-wall carbon nanotubes: a highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate. Polyhedron 28:3816–3822

    Article  CAS  Google Scholar 

  8. Hajian R, Alghour Z (2017) Selective oxidation of alcohols with H2O2 catalyzed by zinc polyoxometalate immobilized on multi-wall carbon nanotubes modified with ionic liquid. Chin Chem Lett 28:971–975

    Article  CAS  Google Scholar 

  9. Hajian R, Jafari F (2019) Zinc polyoxometalate immobilized on ionic liquid-modified MCM-41: an efficient reusable catalyst for the selective oxidation of alcohols with hydrogen peroxide. Iran Chem Soc 16:563–570

    Article  CAS  Google Scholar 

  10. Hajian R, Tangestaninejad S, Moghadam M, Mirkhani V, Khosropour AR (2012) [PZnMo2W9O39]5− immobilized on ionic liquid-modified silica as a heterogeneous catalyst for epoxidation of olefins with hydrogen peroxide. C R Chim 15:975–979

    Article  CAS  Google Scholar 

  11. Rayati S, Ruzbahani SE, Nejabat F (2017) A comparative study of catalytic activity of Fe, Mn and Cu porphyrins immobilized on mesoporous MCM-41 in oxidation of sulfides. Macroheterocyles 10:62–67

    CAS  Google Scholar 

  12. Rayati S, Malekmohammadi S (2016) Catalytic activity of multi-wall carbon nanotube supported manganese (III) porphyrin: an efficient, selective and reusable catalyst for oxidation of alkenes and alkanes with urea–hydrogen peroxide. J Exp Nanosci 11:872–883

    Article  CAS  Google Scholar 

  13. Rayati S, Nejabat F (2016) Catalytic properties of the homologous series of the beta-brominated-pyrrole manganese(III) tetraphenylporphyrins. Polyhedron 104:52–57

    Article  CAS  Google Scholar 

  14. Bagherzadeh M, Latifi R, Tahsini L (2006) (2006) Catalytic activity of manganese(III)-oxazoline complexes in urea hydrogen peroxide epoxidation of olefins: the effect of axial ligands. J Mol Catal A 260:163–169

    Article  CAS  Google Scholar 

  15. Rayati S, Nejabat F (2016) Preparation of porphyrin nanoparticles: effect of bromine atom on the particle size and catalytic activity. Inorg Chem Commun 70:172–174

    Article  CAS  Google Scholar 

  16. Zou J-Z, Xu Z, Li M, You X-Z, Wang H-Q (1995) 7,8,17,18-tetrabromo-5,10,15,20-tetraphenylporphyrin, C44H26Br4N4. Acta Crystallogr Sect C 51:760–761

    Article  Google Scholar 

  17. Chumakov DE, Khoroshutin AV, Anisimov AV, Kobrakov KI (2009) Bromination of porphyrins (review). Chem Heterocycl Compd 45:259–283

    Article  CAS  Google Scholar 

  18. Tangestaninejad S, Habib M, Mirkhani V, Moghadam M (2001) Preparation of an insoluble polymer-supported Mn (III) porphyrin and its use as a new alkene epoxidation and alkane hydroxylation catalyst. J Chem Res 2001:444–445

    Article  Google Scholar 

  19. Moghadam M, Tangestaninejad S, Mirkhani V, Karami B, Rashidi N, Ahmadi H (2006) Oxidation of alcohols with sodium periodate catalyzed by supported Mn (III) porphyrins. J Iran Chem Soc 3:64–68

    Article  CAS  Google Scholar 

  20. Brown JW, Nguyen QT, Otto T, Jarenwattananon NN, Gloggler S, Bouchard LS (2015) Epoxidation of alkenes with molecular oxygen catalyzed by a manganese porphyrin-based metal-organic framework. Catal Commun 59:50–54

    Article  CAS  Google Scholar 

  21. Zhang WJ, Wang Y, Leng Y, Zhang PB, Zhang J, Jiang PP (2016) Hydrogen bond-directed encapsulation of metalloporphyrin into the microcages of zeolite imidazolate frameworks for synergistic biomimetic catalysis. Catal Sci Technol 6:5848–5855

    Article  CAS  Google Scholar 

  22. Sun L (2019) Structure and synthesis of graphene oxide. Chin J Chem Eng 27:2251–2260

    Article  CAS  Google Scholar 

  23. Tkachev SV, Buslaeva EY, Naumkin AV, Kotova SL, Laure IV, Gubin SP (2012) Reduced graphene oxide. Inorg Mater 48:796–802

    Article  CAS  Google Scholar 

  24. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  PubMed  CAS  Google Scholar 

  25. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  PubMed  CAS  Google Scholar 

  26. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  PubMed  CAS  Google Scholar 

  27. Kim DW, Bach LG, Hong SS, Park C, Lim KT (2014) A facile route towards the synthesis of Fe3O4/graphene oxide nanocomposites for environmental applications. Mol Cryst Liquid Cryst 599:43–50

    Article  CAS  Google Scholar 

  28. Wang H, Wei Y (2017) Magnetic graphene oxide modified by chloride imidazole ionic liquid for the high-efficiency adsorption of anionic dyes. RSC Adv 7:9079–9089

    Article  CAS  Google Scholar 

  29. Zhang XL, Zhao X, Liu ZB, Shi S, Zhou WY, Tian JG et al (2011) Nonlinear optical and optical limiting properties of graphene oxide-Fe3O4 hybrid material. J Opt 13:1–7

    Article  Google Scholar 

  30. Berijani K, Farokhi A, Hosseini-Monfared H, Janiak C (2018) Enhanced enantioselective oxidation of olefins catalyzed by Mn-porphyrin immobilized on graphene oxide. Tetrahedron 74:2202–2210

    Article  CAS  Google Scholar 

  31. Chen YT, Hua X, Chen SL (2016) Theoretical study of stability of metal-N-4 macrocyclic compounds in acidic media. Chin J Catal 37:1166–1171

    Article  CAS  Google Scholar 

  32. Hsine Z, Bizid S, Zahou I, Hassen LB, Nasri H, Mlika R (2018) A highly sensitive impedimetric sensor based on iron (III) porphyrin and thermally reduced graphene oxide for detection of Bisphenol A. Synth Met 244:27–35

    Article  CAS  Google Scholar 

  33. Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2010) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48:854–860

    Article  CAS  Google Scholar 

  34. Sakthinathan S, Kubendhiran S, Chen SM, Manibalan K, Govindasamy M, Tamizhdurai P et al (2016) Reduced graphene oxide non-covalent functionalized with zinc tetra phenyl porphyrin nanocomposite for electrochemical detection of dopamine in human serum and rat brain samples. Electroanalysis 28:2126–2135

    Article  CAS  Google Scholar 

  35. Moshari M, Rabbani M, Rahimi R (2016) Synthesis of TCPP-Fe3O4@S/RGO and its application for purification of water. Res Chem Intermed 42:5441–5455

    Article  CAS  Google Scholar 

  36. Shi PZ, Ye NS (2015) Investigation of the adsorption mechanism and preconcentration of sulfonamides using a porphyrin-functionalized Fe3O4-graphene oxide nanocomposite. Talanta 143:219–225

    Article  PubMed  CAS  Google Scholar 

  37. Yu J, Zhu SK, Pang LL, Chen P, Zhu GT (2018) Porphyrin-based magnetic nanocomposites for efficient extraction of polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 1540:1–10

    Article  PubMed  CAS  Google Scholar 

  38. Rayati S, Rezaie S, Nejabat F (2018) Mn(III)-porphyrin/graphene oxide nanocomposite as an efficient catalyst for the aerobic oxidation of hydrocarbons. C R Chim 21:696–703

    Article  CAS  Google Scholar 

  39. Rayati S, Rezaie S, Nejabat F (2019) Catalytic activity of Mn(III) porphyrins supported onto graphene oxide nano-sheets for green oxidation of sulfides. J Coord Chem 72:1466–1479

    Article  CAS  Google Scholar 

  40. Zarrinjahan A, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I (2016) Graphene oxide nanosheets supported manganese(III) porphyrin: a highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate. J Iran Chem Soc 13:1509–1516

    Article  CAS  Google Scholar 

  41. Hajian R, Ehsanikhah A (2018) Manganese porphyrin immobilized on magnetic MCM-41 nanoparticles as an efficient and reusable catalyst for alkene oxidations with sodium periodate. Chem Phys Lett 691:146–154

    Article  CAS  Google Scholar 

  42. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  PubMed  CAS  Google Scholar 

  43. Zhao Q, Bai C, Zhang W, Li Y, Zhang G, Zhang F et al (2014) Catalytic epoxidation of olefins with graphene oxide supported copper (salen) complex. Ind Eng Chem Res 53:4232–4238

    Article  CAS  Google Scholar 

  44. Wei Y, Han B, Hu X, Lin Y, Wang X, Deng X (2012) Synthesis of Fe3O4 nanoparticles and their magnetic properties. Proced Eng 27:632–637

    Article  Google Scholar 

  45. Ghosh B, Sarma S, Pontsho M, Ray SC (2018) Tuning of magnetic behaviour in nitrogenated graphene oxide functionalized with iron oxide. Diam Relat Mater 89:35–42

    Article  CAS  Google Scholar 

  46. Adler AD, Longo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L (1967) A simplified synthesis for meso-tetraphenylporphine. J Org Chem 32:476–476

    Article  CAS  Google Scholar 

  47. Kumar P, Bhyrappa P, Varghese B (2003) An improved protocol for the synthesis of antipodal β-tetrabromo-tetraphenylporphyrin and the crystal structure of its Zn (II) complex. Tetrahedron Lett 44:4849–4851

    Article  CAS  Google Scholar 

  48. Zarnegaryan A, Pahlevanneshan Z, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammdpoor-Baltork I (2019) Copper (II) Schiff base complex immobilized on graphene nanosheets: a heterogeneous catalyst for epoxidation of olefins. J Iran Chem Soc 16:747–756

    Article  CAS  Google Scholar 

  49. Saeedi MS, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Khosropour AR (2014) Manganese porphyrin immobilized on magnetite nanoparticles as a recoverable nanocatalyst for epoxidation of olefins. Mater Chem Phys 146:113–120

    Article  CAS  Google Scholar 

  50. Wang J, Chen Q, Zeng C, Hou B (2004) Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv Mater 16:137–140

    Article  CAS  Google Scholar 

  51. Serwicka EM, Połtowicz J, Bahranowski K, Olejniczak Z, Jones W (2004) Cyclohexene oxidation by Fe-, Co-, and Mn-metalloporphyrins supported on aluminated mesoporous silica. Appl Catal A 275:9–14

    Article  CAS  Google Scholar 

  52. Pietikäinen P (2001) Asymmetric Mn (III)-salen catalyzed epoxidation of unfunctionalized alkenes with in situ generated peroxycarboxylic acids. J Mol Catal A 165:73–79

    Article  Google Scholar 

  53. Wu G, Wang X, Guan N, Li L (2013) Palladium on graphene as efficient catalyst for solvent-free aerobic oxidation of aromatic alcohols: role of graphene support. Appl Catal B 136:177–185

    Article  CAS  Google Scholar 

  54. Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Yazd University Research Council for the partial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robabeh Hajian.

Ethics declarations

Conflict of interest

The authors of this work declare that a potential competing interest does not exist. There is not any financial or personal interest or belief that could affect this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajian, R., Bahrami, E. Mn(III)-Porphyrin Immobilized on the Graphene Oxide-Magnetite Nanocomposite as an Efficient Heterogeneous Catalyst for the Epoxidation of Alkenes. Catal Lett 152, 2445–2456 (2022). https://doi.org/10.1007/s10562-021-03827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03827-x

Keywords

Navigation