Skip to main content

Advertisement

Log in

Enhanced ciprofloxacin degradation via photo-activated persulfate using the effluent of a large wastewater treatment plant

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Antibiotics such as ciprofloxacin (CIP) remain in aquatic environments, causing environmental and public health disturbances. Furthermore, in traditional wastewater treatment plants (WWTP), those compounds are not removed efficiently; owing to the effluent complexity and the ions present in it. The CIP degradation was assessed in real (RWW) and simulated (SWW) effluents of a WWTP, using the activated persulfate mechanism with the magnetic fraction (MF) of a low-grade titanium ore and simulated sunlight (SSL). All tests were performed in a 1000 mL raceway reactor under SSL. CIP and persulfate concentrations were measured using a high-performance liquid chromatography and UV spectroscopy, respectively. A 100% removal of CIP was achieved for RWW and SWW in 15 and 60 min, respectively without residual persulfate. These results may indicate that the contents of nitrate, chloride and total solids present in these samples of wastewater, did not have a significant negative effect on the CIP degradation efficiency. The final pH average value (~ 8.5) of real and simulated wastewater tests may indicate the presence of both hydroxyl and sulfate radicals without pH modification needed. However, only the sulfate radical was identified in the tests. An increase in toxicity was observed in the CIP degradation test with SWW (11%) and RWW (0.8%), which might be associated with the presence of CIP transformation products. The biodegradability also increased after the treatment. Both data showed that the MF-PS-SSL system produced an effluent that can be discharged or eventually treated using biological processes for indirect potable water reuse. These results highlight the use of the magnetic fraction as a strong alternative Fe2+ source instead of costly commercial compounds, for wastewater treatment, which allows the valorization of a raw material generally rejected in conventional TiO2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kümmerer K (2009) Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  Google Scholar 

  2. Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. In: Talanta. Elsevier, 69:334–342. https://doi.org/10.1016/j.talanta.2005.09.037

  3. Cheng D, Ngo HH, Guo W et al (2020) A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. J Hazard Mater 387:121682. https://doi.org/10.1016/j.jhazmat.2019.121682

    Article  CAS  PubMed  Google Scholar 

  4. Giger W, Alder AC, Golet EM et al (2003) Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Chimia (Aarau) 57:485–491. https://doi.org/10.2533/000942903777679064

    Article  CAS  Google Scholar 

  5. Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47:661–677. https://doi.org/10.1021/es3030148

    Article  CAS  PubMed  Google Scholar 

  6. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008

    Article  CAS  PubMed  Google Scholar 

  7. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. https://doi.org/10.1038/nature09440

    Article  CAS  PubMed  Google Scholar 

  8. Rang HP, Ritter JM, Flower RJ, Henderson G (2016) Rang and Dale’s pharmacology, Eighth. Philadelphia; Pennsylvania

  9. Al-Omar MA (2005) Ciprofloxacin: Drug Metabolism and Pharmacokinetic Profile. In: Profiles of Drug Substances, Excipients, and Related Methodology. 31:209–214. https://doi.org/10.1016/S0099-5428(04)31006-3

  10. Salma A, Thoröe-Boveleth S, Schmidt TC, Tuerk J (2016) Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin. J Hazard Mater 313:49–59. https://doi.org/10.1016/j.jhazmat.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  11. Nagulapally SR, Ahmad A, Henry A et al (2009) Occurrence of Ciprofloxacin-, Trimethoprim-Sulfamethoxazole-, and Vancomycin-Resistant Bacteria in a Municipal Wastewater Treatment Plant. Water Environ Res 81:82–90. https://doi.org/10.2175/106143008x304596

    Article  CAS  PubMed  Google Scholar 

  12. Genç N, Can Dogan E, Yurtsever M (2013) Bentonite for ciprofloxacin removal from aqueous solution. Water Sci Technol 68:848–855. https://doi.org/10.2166/wst.2013.313

    Article  CAS  PubMed  Google Scholar 

  13. Roca Jalil ME, Baschini M, Sapag K (2017) Removal of ciprofloxacin from aqueous solutions using pillared clays. Mater (Basel) 10:1345. https://doi.org/10.3390/ma10121345

    Article  CAS  Google Scholar 

  14. Roca Jalil ME, Baschini M, Sapag K (2015) Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Appl Clay Sci 114:69–76. https://doi.org/10.1016/j.clay.2015.05.010

    Article  CAS  Google Scholar 

  15. Hou X, Liu J, Guo W et al (2019) A novel 3D-structured flower-like bismuth tungstate/mag-graphene nanoplates composite with excellent visible-light photocatalytic activity for ciprofloxacin degradation. Catal Commun 121:27–31. https://doi.org/10.1016/j.catcom.2018.12.006

    Article  CAS  Google Scholar 

  16. Pan L, Li J, Li C et al (2018) Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. J Hazard Mater 343:59–67. https://doi.org/10.1016/j.jhazmat.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Gao Y, Yue Q et al (2020) Prepartion and application of novel blast furnace dust based catalytic-ceramic-filler in electrolysis assisted catalytic micro-electrolysis system for ciprofloxacin wastewater treatment. J Hazard Mater 383:121215. https://doi.org/10.1016/j.jhazmat.2019.121215

    Article  CAS  PubMed  Google Scholar 

  18. Wang F, Yu X, Ge M, Wu S (2020) One-step synthesis of TiO2/γ-Fe2O3/GO nanocomposites for visible light-driven degradation of ciprofloxacin. Chem Eng J 384:123381. https://doi.org/10.1016/j.cej.2019.123381

    Article  CAS  Google Scholar 

  19. Chen Y, Wang A, Zhang Y et al (2017) Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): Formation of Fe3+-CIP chelate and its effect on catalytic behavior of Fe2+/Fe3 + and CIP mineralization. Electrochim Acta 256:185–195. https://doi.org/10.1016/j.electacta.2017.09.173

    Article  CAS  Google Scholar 

  20. Durán-Álvarez JC, Avella E, Ramírez-Zamora RM, Zanella R (2016) Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au – Ag and Au – Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catal Today 266:175–187. https://doi.org/10.1016/j.cattod.2015.07.033

    Article  Google Scholar 

  21. Klamerth N, Malato S, Agüera A, Fernández-Alba A (2013) Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Res 47:833–840. https://doi.org/10.1016/j.watres.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER (2017) Treatment technologies for emerging contaminants in water: A review. Chem Eng J 323:361–380. https://doi.org/10.1016/j.cej.2017.04.106

    Article  CAS  Google Scholar 

  23. Almeida Lage AL, Moreira Meireles A, Capelão Marciano A et al (2018) Ciprofloxacin degradation by first-, second-, and third-generation manganese porphyrins. J Hazard Mater 360:445–451. https://doi.org/10.1016/j.jhazmat.2018.08.036

    Article  CAS  PubMed  Google Scholar 

  24. Garrido-Ramírez EG, Theng BKG, Mora ML (2010) Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review. Appl Clay Sci 47:182–192

    Article  Google Scholar 

  25. Feng Y, Wu D, Deng Y et al (2016) Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms. Environ Sci Technol 50:3119–3127. https://doi.org/10.1021/acs.est.5b05974

    Article  CAS  PubMed  Google Scholar 

  26. Huang GX, Wang CY, Yang CW et al (2017) Degradation of bisphenol a by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe. Environ Sci Technol 51:12611–12618. https://doi.org/10.1021/acs.est.7b03007

    Article  CAS  PubMed  Google Scholar 

  27. Hu P, Su H, Chen Z et al (2017) Selective Degradation of Organic Pollutants Using an Efficient Metal-Free Catalyst Derived from Carbonized Polypyrrole via Peroxymonosulfate Activation. Environ Sci Technol 51:11288–11296. https://doi.org/10.1021/acs.est.7b03014

    Article  CAS  PubMed  Google Scholar 

  28. Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712. https://doi.org/10.1021/es035121o

    Article  CAS  PubMed  Google Scholar 

  29. Al-Shamsi MA, Thomson NR (2013) Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Ind Eng Chem Res 52:13564–13571. https://doi.org/10.1021/ie400387p

    Article  CAS  Google Scholar 

  30. Zhong H, Brusseau ML, Wang Y et al (2015) In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane. Water Res 83:104–111. https://doi.org/10.1016/j.watres.2015.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhong H, Tian Y, Yang Q et al (2017) Degradation of landfill leachate compounds by persulfate for groundwater remediation. Chem Eng J 307:399–407. https://doi.org/10.1016/j.cej.2016.08.069

    Article  CAS  PubMed  Google Scholar 

  32. Xue X, Hanna K, Abdelmoula M, Deng N (2009) Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Appl Catal B Environ 89:432–440. https://doi.org/10.1016/j.apcatb.2008.12.024

    Article  CAS  Google Scholar 

  33. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: A review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    Article  CAS  PubMed  Google Scholar 

  34. Song W, Li J, Wang Z, Zhang X (2018) A mini review of activated methods to persulfate-based advanced oxidation process. Water Sci Technol 79:573–579. https://doi.org/10.2166/wcc.2018.168

    Article  CAS  Google Scholar 

  35. Ji Y, Ferronato C, Salvador A et al (2014) Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci Total Environ 472:800–808. https://doi.org/10.1016/j.scitotenv.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  36. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation - A review. Appl Catal B Environ 176–177:249–265. https://doi.org/10.1016/j.apcatb.2015.04.003

    Article  CAS  Google Scholar 

  37. Expósito E, Sánchez-Sánchez CM, Montiel V (2007) Mineral iron oxides as iron source in electro-fenton and photoelectro-fenton mineralization processes. J Electrochem Soc 154:116–122. https://doi.org/10.1149/1.2744134

    Article  CAS  Google Scholar 

  38. Dbira S, Bensalah N, Zagho MM, Bedoui A (2018) Degradation of Diallyl Phthalate (DAP) by Fenton oxidation: Mechanistic and kinetic studies. Appl Sci 9:38. https://doi.org/10.3390/app9010023

  39. Rizzo L, Manaia C, Merlin C et al (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci Total Environ 447:345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  40. Macías-Vargas J-A, Zanella R, Ramírez-Zamora R-M (2020) Degradation of ciprofloxacin using a low-grade titanium ore, persulfate, and artificial sunlight. Environ Sci Pollut Res 27:28623–28635. https://doi.org/10.1007/s11356-020-08293-3

    Article  CAS  Google Scholar 

  41. Polo-López MI, García-Fernández I, Velegraki T et al (2012) Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents. Appl Catal B Environ 111–112:545–554. https://doi.org/10.1016/j.apcatb.2011.11.006

    Article  CAS  Google Scholar 

  42. Cao M, Wang P, Ao Y et al (2016) Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania. J Colloid Interface Sci 467:129–139. https://doi.org/10.1016/j.jcis.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  43. Wang Q, Shao Y, Gao N et al (2016) Degradation of alachlor with zero-valent iron activating persulfate oxidation. J Taiwan Inst Chem Eng 63:379–385. https://doi.org/10.1016/j.jtice.2016.03.038

    Article  CAS  Google Scholar 

  44. Wang C, Chen R, Zhang R, Zhang N (2018) Simple spectrophotometric determination of sulfate free radicals. Analytical Methods 10:3470–3474. https://doi.org/10.1039/C8AY01194J

    Article  CAS  Google Scholar 

  45. Sáenz CI, Nevárez Moorillón GV (2010) La bioluminiscencia de microorganismos marinos y su potencial biotecnológico. Rev Científica la Univ Autónoma Coahuila 2:1–7

    Google Scholar 

  46. Secretaría de Economía (2017) Nmx-Aa-112-Scfi-2017. 48

  47. Lai TM, Shin JK, Hur J et al (2011) Estimating the biodegradability of treated sewage samples using synchronous fluorescence spectra. Sensors 11:7382–7394. https://doi.org/10.3390/s110807382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Habashi F, Kamaleddine F, Bourricaudy E (2015) A new process to upgrade ilmenite to synthetic rutile. Metall 69:27–30

    Google Scholar 

  49. Morcillo M, Díaz I, Cano H et al (2019) Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts. Constr Build Mater 213:723–737. https://doi.org/10.1016/j.conbuildmat.2019.03.334

    Article  Google Scholar 

  50. Lopez RH(2004) Adsorción en Sólidos Mesoporosos. In: Caracterización de medios porosos y procesos percolaticvos y transporte. pp 19–51

  51. United States Environmental Protection Agency (2020) Water: Monitoring & Assessment. In: What are nitrates why are they important? https://archive.epa.gov/water/archive/web/html/vms57.html. Accessed 9 Aug 2020

  52. Gorchev HG, Ozolins G (1984) WHO guidelines for drinking- water quality. WHO Chron 38:104–108

    CAS  PubMed  Google Scholar 

  53. Secretaría de Economía (2000) Norma Mexicana NMX-AA-079-SCFI-2001 Análisis de Aguas - Determinación De Nitratos en Aguas Naturales, Potables, Residuales y Residuales Tratadas - Método de Prueba.Dir Gen Normas 1–27

  54. Cárdenas Calvachi GL, Sánchez Ortiz IA (2013) Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Univ y Salud 15:72–88

    Google Scholar 

  55. Bilotta GS, Brazier RE (2008) Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42:2849–2861. https://doi.org/10.1016/j.watres.2008.03.018

    Article  CAS  PubMed  Google Scholar 

  56. Macías-Vargas J-A, Campos-Mañas MC, Agüera A et al (2021) Enhanced activated persulfate oxidation of ciprofloxacin using a low-grade titanium ore under sunlight: influence of the irradiation source on its transformation products. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11564-8

    Article  Google Scholar 

  57. Fang J, Liu Q, Guo S et al (2019) Spanning solar spectrum: A combined photochemical and thermochemical process for solar energy storage. Appl Ener 247:116–126. https://doi.org/10.1016/j.apenergy.2019.04.043

    Article  CAS  Google Scholar 

  58. Sun H, Wang S (2015) In: Catalysis (ed) Chap. 6. Catalytic oxidation of organic pollutants in aqueous solution using sulfate radicals. The Royal Society of Chemistry, Perth WA, 27:209–247. https://doi.org/10.1039/9781782622697-00209

    Google Scholar 

  59. Fang GD, Dionysiou DD, Wang Y et al (2012) Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics. J Hazard Mater 227–228:394–401. https://doi.org/10.1016/j.jhazmat.2012.05.074

    Article  CAS  PubMed  Google Scholar 

  60. Nidheesh PV, Gandhimathi R, Sanjini NS (2014) NaHCO3 enhanced Rhodamine B removal from aqueous solution by graphite-graphite electro Fenton system. Sep Purif Technol 132:568–576. https://doi.org/10.1016/j.seppur.2014.06.009

    Article  CAS  Google Scholar 

  61. Jen J-F, Leu M-F, Yang TC (1998) Determination of hydroxyl radicals in an advanced oxidation process wth salicylic acid trapping and liquid chromatography. J Chromat A 796:283–288

    CAS  Google Scholar 

  62. Martínez-Tarifa A, Arrojo S, Ávila-Marín AL et al (2010) Salicylic acid dosimetry applied for the statistical determination of significant parameters in a sonochemical reactor. Chem Eng J 157:420–426. https://doi.org/10.1016/j.cej.2009.11.031

    Article  CAS  Google Scholar 

  63. De Lima Perini JA, Perez-Moya M, Nogueira RFP (2013) Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH. J Photochem Photobiol A Chem 259:53–58. https://doi.org/10.1016/j.jphotochem.2013.03.002

    Article  CAS  Google Scholar 

  64. Guo HG, Gao NY, Chu WH et al (2013) Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: Kinetics, parameters, and products. Environ Sci Pollut Res 20:3202–3213. https://doi.org/10.1007/s11356-012-1229-x

    Article  CAS  Google Scholar 

  65. Borba FH, Schmitz A, Pellenz L et al (2018) Genotoxicity and by-products assessment in degradation and mineralization of Ciprofloxacin by UV/H2O2 process. J Environ Chem Eng 6:6979–6988. https://doi.org/10.1016/j.jece.2018.10.068

    Article  CAS  Google Scholar 

  66. Li S, Hu J (2018) Transformation products formation of ciprofloxacin in UVA/LED and UVA/LED/TiO2 systems: Impact of natural organic matter characteristics. Water Res 132:320–330. https://doi.org/10.1016/j.watres.2017.12.065

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Direction of Academic Personnel Affairs (DGAPA) and Instituto de Ingeniería of the Universidad Nacional Autónoma de México [PAPIIT IV100921]; Consejo Nacional de Ciencia y Tecnología [PhD grant No. 97840]; and Instituto de Ingeniería, Universidad Nacional Autónoma de México [Post-doctoral research grant program]. Authors gratefully acknowledge to the staff of the Wastewater Treatment Plant “Cerro de la Estrella” from Sistema de Aguas de la Ciudad de México, the support of the XRD Laboratory of the Geology Institute at UNAM, member of National Laboratory of Mineralogy and Geochemistry of Mexico, in the materials characterization, especially to Dr. T. Pi-Puig, to MSc. Leticia García Montes de Oca for the HPLC analysis and, to Dr. Reyna García Estrada for her support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa-María Ramírez-Zamora.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macías-Vargas, JA., Díaz-Ramírez, ML., García-Mejía, TA. et al. Enhanced ciprofloxacin degradation via photo-activated persulfate using the effluent of a large wastewater treatment plant. Top Catal 65, 1128–1138 (2022). https://doi.org/10.1007/s11244-022-01666-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01666-7

Keywords

Navigation