Skip to main content
Log in

Relating the Synthesis Method of VOX/CeO2/SiO2 Catalysts to Red-Ox Properties, Acid Sites, and Catalytic Activity for the Oxidative Dehydrogenation of Propane and n-Butane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Four V-Ce/SiO2 catalysts were synthesized, using V grafting via VO(O-iC3H7)3 on Ce-loaded Aerosil support, with Ce incorporation either by grafting with Ce(O-iC3H7)4 (VOx/CeO2/S-GA and VOx/CeO2/S-GB) or by incipient wetness impregnation with Ce salt (VOx/CeO2/S-IA and VOx/CeO2/S-IB). Vanadium loadings were similar, while Ce was loaded to two different levels. Raman and X-ray diffraction (XRD) analysis indicated significant differences in VOx speciation: Vanadium pentoxide (V2O5) nano-crystals were prevalent on those catalysts synthesized via Ce impregnation, and absent from the catalysts prepared with grafted Ce. Cerium vanadate (CeVO4) phase was detected in catalyst prepared via Ce grafted at one theoretical monolayer coverage. Microcalorimetry results show that V2O5 species found on VOx/CeO2/S-IA are related to acid sites (acid strength > 90 kJ/mol) responsible for the oxidative dehydrogenation (ODH) reaction of n-butane. Catalyst acidity in VOx/CeO2/S-IA, combined with the redox properties of the vanadium species on the same material, promoted a high selectivity to butadiene and cis- and trans-2-butenes, which subsequently reacted in a Diels-Alder addition to produce benzaldehyde and total oxidation products. In contrast, the lack of acidity in VOx/CeO2/S-GA led to very low selectivity (< 20%) to dehydrogenation products in both the ODH of butane and propane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dejoz A, López-Nieto JM, Melo F, Vázquez I (1997) Ind Eng Chem Res 36:2588–2596

    Article  CAS  Google Scholar 

  2. Martínez-Huerta M, Deo G, Fierro J, Bañares MJ (2007) Phys Chem C 111:18708–18714

    Article  Google Scholar 

  3. Arias-Pérez S, García-Alamilla R, Cárdenas-Galindo MG, Handy BE, Robles-Andrade S, Sandoval-Robles G (2009) Ind Eng Chem Res 48:1215–1219

    Article  Google Scholar 

  4. Najari S, Saeidi S, Concepción P, Dionysiou DD, Bhargava SK, Lee A, Wilson K (2021) Chem Soc Rev 50:4564–4605

    Article  CAS  Google Scholar 

  5. Langeslay RR, Kaphan D, Marshall CL, Stair PC, Sattlelberger AP, Delferro M (2019) Chem Rev 119:2128–2191

    Article  CAS  Google Scholar 

  6. Vedyagin A, Mishakov IV, Llyna EV (2021) J Sol-Gel Sci Technol 97:117–125

    Article  CAS  Google Scholar 

  7. Zhao Z, Yamada Y, Ueda A, Sakurai H, Kobayashi T (2004) Catal Today 93:163–171

    Article  Google Scholar 

  8. López-Nieto JM, Concepción P, Dejoz A, Knözinger H, Melo F, Vázquez I (2000) J Catal 189:147–157

    Article  Google Scholar 

  9. Gazzoli D, De Rossi S, Ferraris G, Caligi V, Ferrari L, Selci S (2009) J Mol Catal 310:17–23

    Article  CAS  Google Scholar 

  10. Roozeboom R, Hazeleger M, Moulijn J, Medema J, De Beer V, Gellings P (1980) J Phys Chem 84:2783–2791

    Article  CAS  Google Scholar 

  11. Zou H, Shen J, Auroux A (2003) J Therm Anal Calorim 72:209–221

    Article  CAS  Google Scholar 

  12. Olthof B, Khodakov A, Bell AT, Iglesia E (2000) J Phys Chem 104:1516–1528

    Article  CAS  Google Scholar 

  13. Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041–6050

    Article  CAS  Google Scholar 

  14. Reddy B, Lakshmanan P, Khan A (2004) J Phys Chem B 108:16855–16863

    Article  CAS  Google Scholar 

  15. Reddy B, Khan A, Lakshmanan P, Aouine M, Loridant S, Volta J (2005) J Phys Chem B 109:3355–3363

    Article  CAS  Google Scholar 

  16. Reddy B, Lakshmanan P, Loridant S, Yamada Y, Kobayashi T, López-Cartes C, Rojas T, Fernández A (2006) J Phys Chem B 110:9140–9147

    Article  CAS  Google Scholar 

  17. Martínez-Huerta M, Deo G, Fierro J, Bañares M (2008) J Phys Chem C 112:11441–11447

    Article  Google Scholar 

  18. Reddy B, Saikia P, Bharali P, Katta L, Thrimurthulu G (2009) Catal Today 141:109–114

    Article  CAS  Google Scholar 

  19. Sánchez-García JL, García-Alamilla R, González-Chávez MM, Handy BE, Cárdenas-Galindo MG (2012) Catal Comm 27:154–158

    Article  Google Scholar 

  20. Sánchez-García JL, Handy BE, Ávila-Hernández IN, Rodríguez AG, García-Alamilla R, Cárdenas-Galindo MG (2020) Catalyst 10:550

    Article  Google Scholar 

  21. Xu Y, Zhai P, Deng Y, Xie J, Liu X, Wang S, Ma D (2020) Angew Chem 59:21736–21928

    Article  Google Scholar 

  22. Khan M, Adamu S, Lucky A, Razzak S, Hossain M (2020) Energy Fuels 6:7410–7421

    Article  Google Scholar 

  23. Shen J, Cortright RD, Chen Y, Dumesic JA (1994) J Phys Chem 98:8067–8073

    Article  CAS  Google Scholar 

  24. Marberger A, Ferri D, Elsener M, Sagar A, Artner C, Schermanz K, Kröcher O (2017) Appl Catal B 218:731–742

    Article  CAS  Google Scholar 

  25. Putluru SSR, Riisager A, Fehrmann R (2009) Catal Lett 133:370–375

    Article  CAS  Google Scholar 

  26. Hernández-Arteaga JGR, Moreno-García H, Rodríguez AG (2021) Thin Solid Films 724:138602

    Article  Google Scholar 

  27. Ng WH, Gnanakumar ES, Batyrev E, Sharma SK, Pujari PK, Greer HF, Zhou W, Sakidja R, Rothenberg G, Barsoum MW, Shiju NR (2018) Angew Chem 130:1501–1506

    Article  Google Scholar 

  28. Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su DS (2008) Science 322:73–77

    Article  CAS  Google Scholar 

  29. Koert DN, Miller DL, Cernansky NP (1994) Combust Flame 96:34–49

    Article  CAS  Google Scholar 

  30. Herbinet O, Battin-Leclerc F, Bax S, Le Gall H, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F (2011) Phys Chem Chem Phys 13:296–308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from CONACYT fellowship 203704 (J.-L.S.-G.), research funding from PIFI (UASLP) for academic groups SMCTSM AC B-26, P/CA32-2006-24-20, P/CA32-PIFI2007-24-29, and P/PIFI 2008-24MSUOO11E-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Guadalupe Cardenas-Galindo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-García, JL., Handy, B.E., Rodríguez, Á.G. et al. Relating the Synthesis Method of VOX/CeO2/SiO2 Catalysts to Red-Ox Properties, Acid Sites, and Catalytic Activity for the Oxidative Dehydrogenation of Propane and n-Butane. Top Catal 65, 1408–1418 (2022). https://doi.org/10.1007/s11244-022-01661-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01661-y

Keywords

Navigation