Skip to main content

Advertisement

Log in

Catalytic Aspects of Pt/Pd Supported on ZnO Rods for Hydrogen Production in Methanol Steam Reforming

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We present a combined experimental and theoretical study for catalytic performance of Pt/Pd supported on ZnO rods for methanol steam reforming reaction (MSR) for hydrogen production. The samples were extensively characterized by Adsorption–Desorption of N2 (BET), electron microscopy in scanning and transmission mode (SEM/TEM), X-ray diffraction (XRD), temperature programed reduction (TPR), and mass spectroscopy (MS). Results, showed typical diffraction peaks corresponding to hexagonal Zincite structure and tetragonal PtZn, PdZn and PtPdZn alloys which were identified by XRD, HRTEM and the last structure by modeling simulation. The crystallographic characterization after catalytic testing indicates that intermetallic PtZn phase on Pt/ZnO sample was more stable in comparison to PdZn on Pd/ZnO catalyst. In addition, Pt stabilize the PdZn structure in the bimetallic catalyst. The catalytic reactivity measured from 200 to 450 °C, indicates that Pt/ZnO-rod sample possess superior catalytic activity from the series as completed on this study. The methanol conversion was tracked by mass spectroscopy concluding minimal changes in outlet signals which suggests samples are chemically stable throughout the complete catalytic reaction. Furthermore, the computer assisted density of states calculations indicate that electron donation from platinum into the zinc oxide support might be the explanation for better catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

© code. [Color code: red balls represent oxygen atoms, white represents molecular hydrogen atoms, gray zinc and turquoise represents the metallic ions, either Pt or Pd]

Fig. 8

© code

Fig. 9

Similar content being viewed by others

References

  1. Liu S, Takahashi K, Uematsu K, Ayabe M (2004) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component. Appl Catal A Gen 277:265–270. https://doi.org/10.1016/j.apcata.2004.09.019

    Article  CAS  Google Scholar 

  2. Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro RM, Fierro JLG (2003) Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. J Catal 219:389–403. https://doi.org/10.1016/S0021-9517(03)00221-5

    Article  CAS  Google Scholar 

  3. Trimm DL, Önsan ZI (2001) On-board fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31–84. https://doi.org/10.1081/CR-100104386

    Article  CAS  Google Scholar 

  4. Iwasa N, Mayanagi T, Masuda S, Takezawa N (2000) Steam reforming of methanol Over Pd-Zn catalysts. React Kinet Catal Lett 69:355–360. https://doi.org/10.1023/A:1005668404401

    Article  CAS  Google Scholar 

  5. Iwasa N, Mayanagi T, Ogawa N, Sakata K, Takezawa N (1998) New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol. Catal Letters 54:119–123. https://doi.org/10.1023/A:1019056728333

    Article  CAS  Google Scholar 

  6. Chin Y-H, Dangle R, Hu J, Dohnalkova AC, Wang Y (2002) Steam reforming of methanol over highly active Pd/ZnO catalyst. Catal Today 77:79–88. https://doi.org/10.1016/S0920-5861(02)00234-1

    Article  CAS  Google Scholar 

  7. Karim A, Conant T, Datye A (2006) The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. J Catal 243:420–427. https://doi.org/10.1016/j.jcat.2006.07.024

    Article  CAS  Google Scholar 

  8. Liu S, Takahashi K, Ayabe M (2003) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading. Catal Today 87:247–253. https://doi.org/10.1016/j.cattod.2003.09.004

    Article  CAS  Google Scholar 

  9. Takezawa N, Iwasa N (1997) Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catal Today 36:45–56. https://doi.org/10.1016/S0920-5861(96)00195-2

    Article  CAS  Google Scholar 

  10. Cubeiro ML, Fierro JLG (1998) Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts. J Catal 179:150–162. https://doi.org/10.1006/jcat.1998.2184

    Article  CAS  Google Scholar 

  11. Cubeiro ML, Fierro JLG (1998) Partial oxidation of methanol over supported palladium catalysts. Appl Catal A Gen 168:307–322. https://doi.org/10.1016/S0926-860X(97)00361-X

    Article  CAS  Google Scholar 

  12. Zeng Z, Liu G, Geng J, Jing D, Hong X, Guo L (2019) A high-performance PdZn alloy catalyst obtained from metal-organic framework for methanol steam reforming hydrogen production. Int J Hydrogen Energy 44:24387–24397. https://doi.org/10.1016/j.ijhydene.2019.07.195

    Article  CAS  Google Scholar 

  13. Pérez-Hernández R, Avendaño AD, Rubio E, Rodríguez-Lugo V (2011) Hydrogen production by methanol steam reforming over Pd/ZrO2–TiO2 catalysts. Top Catal 54:572–578. https://doi.org/10.1007/s11244-011-9622-0

    Article  CAS  Google Scholar 

  14. Xiong G, Luo L, Li C, Yang X (2009) Synthesis of mesoporous ZnO (m-ZnO) and catalytic performance of the Pd/m-ZnO catalyst for methanol steam reforming. Energy Fuels 23:1342–1346. https://doi.org/10.1021/ef8008376

    Article  CAS  Google Scholar 

  15. Lei Y, Lee S, Low K-B, Marshall CL, Elam JW (2016) Combining electronic and geometric effects of ZnO-promoted Pt nanocatalysts for aqueous phase reforming of 1-propanol. ACS Catal 6:3457–3460. https://doi.org/10.1021/acscatal.6b00963

    Article  CAS  Google Scholar 

  16. Pérez-Hernández R, Gutiérrez-Wing C, Mondragón-Galicia G, Gutiérrez-Martínez A, Deepak FL, Mendoza-Anaya D (2013) Ag nanowires as precursors to synthesize novel Ag-CeO2 nanotubes for H2 production by methanol reforming. Catal Today 212:225–231. https://doi.org/10.1016/j.cattod.2012.09.021

    Article  CAS  Google Scholar 

  17. Pérez-Hernández R, Mondragón-Galicia G, Allende Maravilla A, Palacios J (2013) Nano-dimensional CeO2 nanorods for high Ni loading catalysts: H2 production by autothermal steam reforming of methanol reaction. Phys Chem Chem Phys 15:12702. https://doi.org/10.1039/c3cp52032c

    Article  CAS  PubMed  Google Scholar 

  18. Ouyang B, Tan W, Liu B (2017) Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. Catal Commun 95:36–39. https://doi.org/10.1016/J.CATCOM.2017.03.005

    Article  CAS  Google Scholar 

  19. Romero-Núñez A, Díaz G (2015) High oxygen storage capacity and enhanced catalytic performance of NiO/NixCe1−O2−δ nanorods: synergy between Ni-doping and 1D morphology. RSC Adv 5:54571–54579. https://doi.org/10.1039/C5RA04259C

    Article  CAS  Google Scholar 

  20. Claudio-Piedras A, Ramírez-Zamora RM, Alcántar-Vázquez BC, Gutiérrez-Martínez A, Mondragón-Galicia G, Morales-Anzures F, Pérez-Hernández R (2021) One dimensional Pt/CeO2-NR catalysts for hydrogen production by steam reforming of methanol: Effect of Pt precursor. Catal Today 360:55–62. https://doi.org/10.1016/j.cattod.2019.08.013

    Article  CAS  Google Scholar 

  21. Pérez-Hernández R, Gutiérrez-Martínez A, Mayoral A, Leonard Deepak F, Fernández-García ME, Mondragón-Galicia G, Miki M, José-Yacamán M (2010) Hydrogen production by steam reforming of methanol over a Ag/ZnO one dimensional catalyst. Adv Mater Res 132:205–219. https://doi.org/10.4028/www.scientific.net/AMR.132.205

    Article  CAS  Google Scholar 

  22. Hu J, Fan Y, Pei Y, Qiao M, Fan K, Zhang X, Zong B (2013) Shape effect of ZnO crystals as cocatalyst in combined reforming-hydrogenolysis of glycerol. ACS Catal 3:2280–2287. https://doi.org/10.1021/cs400526s

    Article  CAS  Google Scholar 

  23. Pérez-Hernández R (2021) Reactivity of Pt/Ni supported on CeO2-nanorods on methanol steam reforming for H2 production: Steady state and DRIFTS studies. Int J Hydrogen Energy 46:25954–25964. https://doi.org/10.1016/j.ijhydene.2021.03.125

    Article  CAS  Google Scholar 

  24. Zhang H, Sun J, Dagle VL, Halevi B, Datye AK, Wang Y (2014) Influence of ZnO facets on Pd/ZnO catalysts for methanol steam reforming. ACS Catal 4:2379–2386. https://doi.org/10.1021/cs500590t

    Article  CAS  Google Scholar 

  25. Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A Gen 179:21–29. https://doi.org/10.1016/S0926-860X(98)00298-1

    Article  CAS  Google Scholar 

  26. Rodríguez-Lugo V, Mondragón-Galicia G, Gutiérrez-Martínez A, Gutiérrez-Wing C, Rosales González O, López P, Salinas-Hernández P, Tzompantzi F, Reyes Valderrama MI, Pérez-Hernández R (2020) Pt–Ni/ZnO-rod catalysts for hydrogen production by steam reforming of methanol with oxygen. RSC Adv 10:41315–41323. https://doi.org/10.1039/D0RA06181F

    Article  Google Scholar 

  27. Ramos-Fernandez E, Ferreira A, Sepulveda-Escribano A, Kapteijn F, Rodriguez-Reinoso F (2008) Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support. J Catal 258:52–60. https://doi.org/10.1016/j.jcat.2008.05.025

    Article  CAS  Google Scholar 

  28. Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N (1993) Highly selective supported Pd catalysts for steam reforming of methanol. Catal Letters 19:211–216. https://doi.org/10.1007/BF00771756

    Article  CAS  Google Scholar 

  29. Lesiak M, Binczarski M, Karski S, Maniukiewicz W, Rogowski J, Szubiakiewicz E, Berlowska J, Dziugan P, Witońska I (2014) Hydrogenation of furfural over Pd–Cu/Al2O3 catalysts. The role of interaction between palladium and copper on determining catalytic properties. J Mol Catal A Chem 395:337–348. https://doi.org/10.1016/j.molcata.2014.08.041

    Article  CAS  Google Scholar 

  30. Naresh D, Kumar VP, Harisekhar M, Nagaraju N, Putrakumar B, Chary KVR (2014) Characterization and functionalities of Pd/hydrotalcite catalysts. Appl Surf Sci 314:199–207. https://doi.org/10.1016/j.apsusc.2014.06.156

    Article  CAS  Google Scholar 

  31. Habibi AH, Hayes RE, Semagina N (2018) Evaluation of hydrothermal stability of encapsulated PdPt@SiO2 catalyst for lean CH4 combustion. Appl Catal A Gen 556:129–136. https://doi.org/10.1016/j.apcata.2018.02.034

    Article  CAS  Google Scholar 

  32. Consonni M, Jokic D, Yu Murzin D, Touroude R (1999) High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde. J Catal 188:165–175. https://doi.org/10.1006/jcat.1999.2635

    Article  CAS  Google Scholar 

  33. Iwasa N, Yoshikawa M, Nomura W, Arai M (2005) Transformation of methanol in the presence of steam and oxygen over ZnO-supported transition metal catalysts under stream reforming conditions. Appl Catal A Gen 292:215–222. https://doi.org/10.1016/J.APCATA.2005.06.019

    Article  CAS  Google Scholar 

  34. Galán OAL, Carbajal-Franco G (2021) Energy profiles by DFT methods for CO and NO catalytic adsorption over ZnO surfaces. Catal Today 360:38–45. https://doi.org/10.1016/j.cattod.2019.08.003

    Article  CAS  Google Scholar 

  35. Liu Z, Grinter DC, Lustemberg PG, Nguyen-Phan T, Zhou Y, Luo S, Waluyo I, Crumlin EJ, Stacchiola DJ, Zhou J, Carrasco J, Busnengo HF, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA (2016) Dry Reforming of Methane on a Highly-Active Ni-CeO 2 Catalyst: Effects of Metal-Support Interactions on C−H Bond Breaking. Angew Chemie Int Ed 55:7455–7459. https://doi.org/10.1002/anie.201602489

    Article  CAS  Google Scholar 

  36. Sá S, Sousa JM, Mendes A (2010) Methanol steam reforming in a dual-bed membrane reactor for producing PEMFC grade hydrogen. Catal Today 156:254–260. https://doi.org/10.1016/j.cattod.2010.02.030

    Article  CAS  Google Scholar 

  37. Iulianelli A, Ribeirinha P, Mendes A, Basile A (2014) Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renew Sustain Energy Rev 29:355–368. https://doi.org/10.1016/j.rser.2013.08.032

    Article  CAS  Google Scholar 

  38. Masoumi S, Nadimi E, Hossein-Babaei F (2018) Electronic properties of Ag-doped ZnO: DFT hybrid functional study. Phys Chem Chem Phys 20:14688–14693. https://doi.org/10.1039/C8CP01578C

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Council of Science and Technology (CONACYT-SENER) 226151, ININ CA-607. We thank to Dr Samuel Tehuacanero Cuapa for technical TEM support. We thank Instituto de Ingeniería y Tecnología of Universidad Autónoma de Cd. Juárez and Programa de Fortalecimiento a la Calidad Educativa (PFCE) 2016-2017 of División Multidisciplinaria de Ciudad Universitaria for licensing BIOVIA-Materials Studio©. J. Reyna Alvarado and O. A. López-Galán thank PNCP Scholarship from CONACyT with solicitation # 1022565 and #735528.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Salinas-Hernández, M. Ramos or R. Pérez-Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modragón-Galicia, G., Toledo Toledo, M., Morales-Anzures, F. et al. Catalytic Aspects of Pt/Pd Supported on ZnO Rods for Hydrogen Production in Methanol Steam Reforming. Top Catal 65, 1556–1569 (2022). https://doi.org/10.1007/s11244-022-01633-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01633-2

Keywords

Navigation