Skip to main content
Log in

Sulfonated Reduced Graphene Oxide: An Acid Catalyst that Efficiently Promotes the Esterification of Glycerol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A sulfonated graphene catalyst was designed and tested in the acetylation of glycerol. The catalyst was synthesized using graphite as starting material and comprised three stages, which included: (i) synthesis the graphene oxide by means of a modified Hummers method, (ii) reduction with ascorbic acid, and (iii) functionalization of the material with sulfanilic acid by in situ diazotization. Structural, morphological and chemical properties were characterized by SEM, XRD, and FT-IR spectroscopy. The acidity was determined by elemental analysis. The catalytic properties of catalyst in the glycerol acetylation were studied and compared with a commercial sulfonic resin, i.e. Amberlyst® 15. The sulfonated graphene presents attractive features in the catalytic transformation of glycerol, allowing for significant increase in the reaction rate at low temperature, and achieving at optimum activity and greater selectivity towards triacetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Okoye PU, Abdullah AZ, Hameed BH (2017) Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. Fuel 209:538–544. https://doi.org/10.1016/j.fuel.2017.08.024

    Article  CAS  Google Scholar 

  2. Pagliaro M, Ciriminna R, Kimura H et al (2007) From glycerol to value-added products. Angew Chemie Int Ed 46:4434–4440. https://doi.org/10.1002/anie.200604694

    Article  CAS  Google Scholar 

  3. Reddy PS, Sudarsanam P, Raju G, Reddy BM (2010) Synthesis of bio-additives: acetylation of glycerol over zirconia-based solid acid catalysts. Catal Commun 11:1224–1228. https://doi.org/10.1016/j.catcom.2010.07.006

    Article  CAS  Google Scholar 

  4. Gonçalves VLC, Pinto BP, Silva JC, Mota CJA (2008) Acetylation of glycerol catalyzed by different solid acids. Catal Today 133–135:673–677. https://doi.org/10.1016/j.cattod.2007.12.037

    Article  CAS  Google Scholar 

  5. Aghbashlo M, Tabatabaei M, Rastegari H, Ghaziaskar HS (2018) Exergy-based sustainability analysis of acetins synthesis through continuous esterification of glycerol in acetic acid using Amberlyst®36 as catalyst. J Clean Prod 183:1265–1275. https://doi.org/10.1016/j.jclepro.2018.02.218

    Article  CAS  Google Scholar 

  6. Malaika A, Kozłowski M (2019) Glycerol conversion towards valuable fuel blending compounds with the assistance of SO3H-functionalized carbon xerogels and spheres. Fuel Process Technol 184:19–26. https://doi.org/10.1016/j.fuproc.2018.11.006

    Article  CAS  Google Scholar 

  7. Calero J, Luna D, Sancho ED et al (2015) An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renew Sustain Energy Rev 42:1437–1452. https://doi.org/10.1016/j.rser.2014.11.007

    Article  CAS  Google Scholar 

  8. Manurung R, Dedi Anggreawan M, Gery Siregar A (2020) Triacetin production using SiO2-H3PO4 catalysts derived from bamboo leaf biomass waste for esterification reactions of glycerol and acetic acid. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/801/1/012052

    Article  Google Scholar 

  9. Khayoon MS, Triwahyono S, Hameed BH, Jalil AA (2014) Improved production of fuel oxygenates via glycerol acetylation with acetic acid. Chem Eng J 243:473–484. https://doi.org/10.1016/j.cej.2014.01.027

    Article  CAS  Google Scholar 

  10. Testa ML, La Parola V (2021) Sulfonic acid-functionalized inorganic materials as efficient catalysts in various applications: a minireview. Catalysts. https://doi.org/10.3390/catal11101143

    Article  Google Scholar 

  11. Kale S, Umbarkar SB, Dongare MK et al (2015) Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer. Appl Catal A 490:10–16. https://doi.org/10.1016/j.apcata.2014.10.059

    Article  CAS  Google Scholar 

  12. Cahyono RB, Mufrodi Z, Hidayat A, Budiman A (2016) Acetylation of glycerol for triacetin production using Zr-natural zeolite catalyst. ARPN J Eng Appl Sci 11:5194–5197

    CAS  Google Scholar 

  13. Venkatesha NJ, Bhat YS, Prakash BSJ (2016) Volume accessibility of acid sites in modified montmorillonite and triacetin selectivity in acetylation of glycerol. RSC Adv 6:45819–45828. https://doi.org/10.1039/c6ra05720a

    Article  CAS  Google Scholar 

  14. Appaturi JN, Jothi Ramalingam R, Selvaraj M et al (2021) Selective synthesis of triacetyl glyceride biofuel additive via acetylation of glycerol over NiO-supported TiO2 catalyst enhanced by non-microwave instant heating. Appl Surf Sci 545:149017. https://doi.org/10.1016/j.apsusc.2021.149017

    Article  CAS  Google Scholar 

  15. Khayoon MS, Hameed BH (2011) Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresour Technol 102:9229–9235. https://doi.org/10.1016/j.biortech.2011.07.035

    Article  CAS  PubMed  Google Scholar 

  16. Arbelaez Perez OF, Gonzalez Martinez CD, Salazar Henao D, Guzmán Sanchez JA (2021) Producción de acetinas (aditivos para combustibles) a partir de glicerol. Lámpsakos. https://doi.org/10.21501/21454086.3816

    Article  Google Scholar 

  17. Wang L, Wang D, Zhang S, Tian H (2013) Synthesis and characterization of sulfonated graphene as a highly active solid acid catalyst for the ester-exchange reaction. Catal Sci Technol 3:1194–1197. https://doi.org/10.1039/c3cy20646g

    Article  CAS  Google Scholar 

  18. Oger N, Lin YF, Labrugère C et al (2016) Practical and scalable synthesis of sulfonated graphene. Carbon N Y 96:342–350. https://doi.org/10.1016/j.carbon.2015.09.082

    Article  CAS  Google Scholar 

  19. Mirza-Aghayan M, Molaee Tavana M, Boukherroub R (2016) Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation. Ultrason Sonochem 29:371–379. https://doi.org/10.1016/j.ultsonch.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  20. Ji J, Zhang G, Chen H et al (2011) Sulfonated graphene as water-tolerant solid acid catalyst. Chem Sci 2:484–487. https://doi.org/10.1039/c0sc00484g

    Article  CAS  Google Scholar 

  21. Liu F, Sun J, Zhu L et al (2012) Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. J Mater Chem 22:5495–5502. https://doi.org/10.1039/c2jm16608a

    Article  CAS  Google Scholar 

  22. Miranda C, Ramírez A, Sachse A et al (2019) Sulfonated graphenes: efficient solid acid catalyst for the glycerol valorization. Appl Catal A 580:167–177. https://doi.org/10.1016/j.apcata.2019.04.010

    Article  CAS  Google Scholar 

  23. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. Am Chem Soc 4:4806–4814

    CAS  Google Scholar 

  24. Johra FT, Lee JW, Jung WG (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883–2887. https://doi.org/10.1016/j.jiec.2013.11.022

    Article  CAS  Google Scholar 

  25. Pan D, Wang S, Zhao B et al (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21:3136–3142. https://doi.org/10.1021/cm900395k

    Article  CAS  Google Scholar 

  26. Sahoo P, Shubhadarshinee L, Jali BR et al (2021) Synthesis and characterization of graphene oxide and graphene from coal. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.08.206

    Article  Google Scholar 

  27. Stobinski L, Lesiak B, Malolepszy A et al (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectros Relat Phenomena 195:145–154. https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  28. Guliani D, Kaur K, Singh N et al (2019) Catalytic performance of sulfate-grafted graphene oxide for esterification of acetic acid with methanol. Chem Eng Commun 206:592–604. https://doi.org/10.1080/00986445.2018.1514601

    Article  CAS  Google Scholar 

  29. Estevez R, Aguado-Deblas L, Montes V et al (2020) Sulfonated carbons from olive stones as catalysts in the microwave-assisted etherification of glycerol with tert-butyl alcohol. Mol Catal 488:110921. https://doi.org/10.1016/j.mcat.2020.110921

    Article  CAS  Google Scholar 

  30. Chen Y, Zhao H, Sheng L et al (2012) Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures. Chem Phys Lett 538:72–76. https://doi.org/10.1016/j.cplett.2012.04.020

    Article  CAS  Google Scholar 

  31. Ferreira P, Fonseca IM, Ramos AM et al (2011) Acetylation of glycerol over heteropolyacids supported on activated carbon. Catal Commun 12:573–576. https://doi.org/10.1016/j.catcom.2010.11.022

    Article  CAS  Google Scholar 

  32. Zhou L, Nguyen TH, Adesina AA (2012) The acetylation of glycerol over amberlyst-15: kinetic and product distribution. Fuel Process Technol 104:310–318. https://doi.org/10.1016/j.fuproc.2012.06.001

    Article  CAS  Google Scholar 

  33. Sandesh S, Manjunathan P, Halgeri AB, Shanbhag GV (2015) Glycerol acetins: fuel additive synthesis by acetylation and esterification of glycerol using cesium phosphotungstate catalyst. RSC Adv 5:104354–104362. https://doi.org/10.1039/c5ra17623a

    Article  CAS  Google Scholar 

  34. Liao X, Zhu Y, Wang SG et al (2010) Theoretical elucidation of acetylating glycerol with acetic acid and acetic anhydride. Appl Catal B 94:64–70. https://doi.org/10.1016/j.apcatb.2009.10.021

    Article  CAS  Google Scholar 

  35. Ziyang Z, Hidajat K, Ray AK (2001) Determination of adsorption and kinetic parameters for methyl tert-butyl ether synthesis from tert-butyl alcohol and methanol. J Catal 200:209–221. https://doi.org/10.1006/jcat.2001.3180

    Article  CAS  Google Scholar 

  36. Ozbay N, Oktar N, Dogu G, Dogu T (2013) Activity comparison of different solid acid catalysts in etherification of glycerol with tert-butyl alcohol in flow and batch reactors. Top Catal 56:1790–1803. https://doi.org/10.1007/s11244-013-0116-0

    Article  CAS  Google Scholar 

  37. Patel A, Singh S (2014) A green and sustainable approach for esterification of glycerol using 12-tungstophosphoric acid anchored to different supports: kinetics and effect of support. Fuel 118:358–364. https://doi.org/10.1016/j.fuel.2013.11.005

    Article  CAS  Google Scholar 

  38. Dalla Costa BO, Decolatti HP, Legnoverde MS, Querini CA (2017) Influence of acidic properties of different solid acid catalysts for glycerol acetylation. Catal Today 289:222–230. https://doi.org/10.1016/j.cattod.2016.09.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors express our acknowledges for the financial support obtained from VRI-UNICAUCA (Project ID 5526). A.S. acknowledges financial support from the European Union (ERDF) and “Région Nouvelle Aquitaine”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian David Miranda Muñoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos Riascos, L.D., Ramírez Sanabria, A.E., Torres Rodríguez, G.A. et al. Sulfonated Reduced Graphene Oxide: An Acid Catalyst that Efficiently Promotes the Esterification of Glycerol. Top Catal 65, 957–965 (2022). https://doi.org/10.1007/s11244-022-01629-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01629-y

Keywords

Navigation