Skip to main content

Advertisement

Log in

Recent Progress in Photocatalytic Efficiency of Hybrid Three-Dimensional (3D) Graphene Architectures for Pollution Remediation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The importance of pollutant remediation using solar energy is increasingly acknowledged as a viable method to solve the current environmental problems. To date, three-dimensional (3D) graphene architectures have demonstrated excellent photocatalytic performance due to their salient characteristics. The hydrothermal treatment is the commonly reported synthetic protocol in preparing various novel hybrid 3D graphene architectures. This chapter focuses on the recent progress in developing and applying hybrid 3D graphene for the photocatalytic remediation of organic pollutants such as dye molecules, emerging contaminants, and heavy metals. Various novel design based on semiconductor/3D graphene has led to the creation of highly efficient heterojunction photocatalyst. The transformation to a 3D architecture does not only improve the accessible surface area but also enhanced light harvesting capability and charge transport. In addition, we have also made an effort to discuss some photocatalytic antibacterial disinfection innovations. Finally, prospects in the construction of hybrid 3D graphene possessing enhanced photocatalytic materials are presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2021 Elsevier.)

Fig. 4

Copyright 2020 Elsevier)

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

AOP:

Advance oxidation process

BPA:

Bisphenol A

CNT:

Carbon nanotubes

DAPI:

4′,6-Diamidino-2-phenylindole

DCP:

2,4 Dichlorophenol

CB:

Conduction band

Gr:

Graphene

GA:

Graphene aerogel

GBN:

Graphene based nanomaterial

GO:

Graphene oxide

HT:

Hydrothermal

NP:

Nanoparticle

PI:

Propidium iodide

rGA:

Reduced graphene aerogel

rGO:

Reduced graphene oxide

rGH:

Reduced graphene hydrogel

ROS:

Reactive oxygen species

SPR:

Surface plasmon resonance

TC:

Tetracycline

VB:

Valence band

VdW:

Van der Waals

Vis:

Visible light

UV:

Ultraviolet light

2D:

Two-dimensional

3D:

Three-dimensional

References

  1. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  2. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794. https://doi.org/10.1021/cs200652y

    Article  CAS  Google Scholar 

  3. Avouris P, Dimitrakopoulos C (2012) Graphene: synthesis and applications. Mater Today 15:86–97. https://doi.org/10.1016/S1369-7021(12)70044-5

    Article  CAS  Google Scholar 

  4. Lu H, Zhang S, Guo L, Li W (2017) Applications of graphene-based composite hydrogels: a review. RSC Adv 7:51008–51020. https://doi.org/10.1039/C7RA09634H

    Article  CAS  Google Scholar 

  5. Zheng ALT, Boonyuen S, Li GY et al (2021) Design of reduced graphene hydrogel with alkylamine surface functionalization through immersion/agitation method and its adsorption mechanism. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.131008

    Article  Google Scholar 

  6. Pal K, Kyzas GZ, Kralj S, Gomes de Souza F (2021) Sunlight sterilized, recyclable and super hydrophobic anti-COVID laser-induced graphene mask formulation for indelible usability. J Mol Struct 1233:130100. https://doi.org/10.1016/j.molstruc.2021.130100

    Article  CAS  Google Scholar 

  7. Pal K, Asthana N, Aljabali AA et al (2021) A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci. https://doi.org/10.1080/10408436.2021.1935717

    Article  Google Scholar 

  8. Alam K, Warsi F, Khan A, Khan IM (2021) Structural analysis and thermal properties of graphene and biocomposite potential application in various sensors. Bio-manufactured nanomaterials. Springer International Publishing, Cham, pp 407–427

    Chapter  Google Scholar 

  9. Jayan JS, Pal K, Saritha A et al (2021) Graphene oxide as multi-functional initiator and effective molecular reinforcement in PVP/epoxy composites. J Mol Struct 1230:129873. https://doi.org/10.1016/j.molstruc.2021.129873

    Article  CAS  Google Scholar 

  10. Pal K, Si A, El-Sayyad GS et al (2021) Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO 2 hybrid matrix: optoelectronics and biotechnological aspects. Crit Rev Solid State Mater Sci 46:385–449. https://doi.org/10.1080/10408436.2020.1805295

    Article  CAS  Google Scholar 

  11. Si A, Kyzas GZ, Pal K, de Souza FG Jr. (2021) Graphene functionalized hybrid nanomaterials for industrial-scale applications: a systematic review. J Mol Struct 1239:130518. https://doi.org/10.1016/j.molstruc.2021.130518

    Article  CAS  Google Scholar 

  12. Elkodous MA, El-Sayyad GS, Mohamed AE et al (2019) Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1−xFe2O4; X = 0.9/SiO2/TiO2). J Mater Sci Mater Electron 30:8312–8328. https://doi.org/10.1007/s10854-019-01149-8

    Article  CAS  Google Scholar 

  13. Santhosh C, Malathi A, Daneshvar E et al (2018) Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-33818-9

    Article  CAS  Google Scholar 

  14. Ziarati Saravani A, Nadimi M, Aroon MA, Ebrahimian Pirbazari A (2019) Magnetic TiO2/NiFe2O4/reduced graphene oxide nanocomposite as a recyclable photocatalyst for photocatalytic removal of methylene blue under visible light. J Alloys Compd 803:291–306. https://doi.org/10.1016/j.jallcom.2019.06.245

    Article  CAS  Google Scholar 

  15. Roy J, Pal K, Pal Majumder T (2014) Bio-polymer assisted solvothermal growth and optical characterization of CdS nanostructures. Adv Mater Lett 5:538–542. https://doi.org/10.5185/amlett.2014.4561

    Article  CAS  Google Scholar 

  16. Low J, Yu J, Jaroniec M et al (2017) Heterojunction photocatalysts. Adv Mater 29:1601694. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  17. Ohtani B (2010) Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C Photochem Rev 11:157–178. https://doi.org/10.1016/j.jphotochemrev.2011.02.001

    Article  CAS  Google Scholar 

  18. Sun J, Zhang M, Wang Z-F et al (2019) Synthesis of anatase TiO2 with exposed 001 and 101 facets and photocatalytic activity. Rare Metal 38:287–291. https://doi.org/10.1007/s12598-014-0329-9

    Article  CAS  Google Scholar 

  19. Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J Photochem Photobiol C 24:64–82. https://doi.org/10.1016/j.jphotochemrev.2015.07.001

    Article  CAS  Google Scholar 

  20. Lau GE, Che Abdullah CA, Wan Ahmad WAN et al (2020) Eco-friendly photocatalysts for degradation of dyes. Catalysts 10:1129. https://doi.org/10.3390/catal10101129

    Article  CAS  Google Scholar 

  21. Žerjav G, Arshad MS, Djinović P et al (2017) Improved electron–hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance. Nanoscale 9:4578–4592. https://doi.org/10.1039/C7NR00704C

    Article  CAS  Google Scholar 

  22. Xu C, He X, Wang C et al (2016) Introduction of holes into graphene sheets to further enhance graphene–TiO2 photocatalysis activities. RSC Adv 6:84068–84073. https://doi.org/10.1039/C6RA17603H

    Article  CAS  Google Scholar 

  23. Foti C, Mineo PG, Nicosia A et al (2020) Recent advances of graphene-based strategies for arsenic remediation. Front Chem. https://doi.org/10.3389/fchem.2020.608236

    Article  Google Scholar 

  24. Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896. https://doi.org/10.1039/C5CS00021A

    Article  CAS  Google Scholar 

  25. Zheng ALT, Andou Y (2021) Detection and remediation of bisphenol A (BPA) using graphene-based materials: mini-review. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03512-x

    Article  Google Scholar 

  26. Zheng ALT, Boonyuen S, Ohno T, Andou Y (2021) Accessing effects of aliphatic dicarboxylic acid towards the physical and chemical changes in low temperature hydrothermally reduced graphene hydrogel. J Porous Mater 28:1291–1300. https://doi.org/10.1007/s10934-021-01072-6

    Article  CAS  Google Scholar 

  27. Zheng ALT, Boonyuen S, Ohno T, Andou Y (2021) Hydrothermally reduced graphene hydrogel intercalated with divalent ions for dye adsorption studies. Processes 9:169. https://doi.org/10.3390/pr9010169

    Article  CAS  Google Scholar 

  28. Zheng ALT, Phromsatit T, Boonyuen S, Andou Y (2020) Synthesis of silver nanoparticles/porphyrin/reduced graphene oxide hydrogel as dye adsorbent for wastewater treatment. FlatChem. https://doi.org/10.1016/j.flatc.2020.100174

    Article  Google Scholar 

  29. Ibrahim I, Tsubota T, Hassan MA, Andou Y (2021) Surface functionalization of biochar from oil palm empty fruit bunch through hydrothermal process. Processes 9:149. https://doi.org/10.3390/pr9010149

    Article  CAS  Google Scholar 

  30. Zhou Y, Bao Q, Tang LAL et al (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956. https://doi.org/10.1021/cm9006603

    Article  CAS  Google Scholar 

  31. Li J, Wang Y, Ling H et al (2019) Significant enhancement of the visible light photocatalytic properties in 3D BiFeO3/graphene composites. Nanomaterials 9:65. https://doi.org/10.3390/nano9010065

    Article  CAS  Google Scholar 

  32. Li Y, Yang J, Zheng S et al (2016) One-pot synthesis of 3D TiO2-reduced graphene oxide aerogels with superior adsorption capacity and enhanced visible-light photocatalytic performance. Ceram Int 42:19091–19096. https://doi.org/10.1016/j.ceramint.2016.09.069

    Article  CAS  Google Scholar 

  33. Zhang J-Y, Mei J-Y, Yi S-S, Guan X-X (2019) Constructing of Z-scheme 3D g-C3N4-ZnO@graphene aerogel heterojunctions for high-efficient adsorption and photodegradation of organic pollutants. Appl Surf Sci 492:808–817. https://doi.org/10.1016/j.apsusc.2019.06.261

    Article  CAS  Google Scholar 

  34. Mohd Zawawi R, Zheng ALT (2020) Zinc oxide/vancomycin-based electrochemical chiral sensor for the recognition of penicillamine enantiomers. Int J Electrochem Sci. https://doi.org/10.20964/2020.04.39

    Article  Google Scholar 

  35. Zheng ALT, Andou Y, Zawawi RM (2017) Effects of deposition parameters on the electrochemical behaviour of ZnO thin film. J Adv Chem Sci 3:521–524

    Google Scholar 

  36. Zhang J, Yang H, Shen G et al (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Commun 46:1112–1114. https://doi.org/10.1039/B917705A

    Article  CAS  Google Scholar 

  37. Li Y, Cui W, Liu L et al (2016) Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl Catal B 199:412–423. https://doi.org/10.1016/j.apcatb.2016.06.053

    Article  CAS  Google Scholar 

  38. Ma C, Seo WC, Lee J et al (2021) Construction of quantum dots self-decorated BiVO4/reduced graphene hydrogel composite photocatalyst with improved photocatalytic performance for antibiotics degradation. Chemosphere 275:130052. https://doi.org/10.1016/j.chemosphere.2021.130052

    Article  CAS  Google Scholar 

  39. Sagadevan S, Pal K, Koteeswari P, Subashini A (2017) Synthesis and characterization of TiO2/graphene oxide nanocomposite. J Mater Sci Mater Electron 28:7892–7898. https://doi.org/10.1007/s10854-017-6488-3

    Article  CAS  Google Scholar 

  40. Fan S-S, Shen L, Dong Y et al (2021) sp3-Like defect structure of hetero graphene-carbon nanotubes for promoting carrier transfer and stability. J Energy Chem 57:189–197. https://doi.org/10.1016/j.jechem.2020.09.020

    Article  CAS  Google Scholar 

  41. Ullah S, Hasan M, Ta HQ et al (2019) Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv Funct Mater 29:1904457. https://doi.org/10.1002/adfm.201904457

    Article  CAS  Google Scholar 

  42. Wang XL, Li J, Liu WM (2021) Synthesizing pyridinic-N dominate-doped graphene/BiVO4 nanocomposite as a superior photocatalyst for degradation under visible-irradiation. Opt Mater (Amst) 114:110922. https://doi.org/10.1016/j.optmat.2021.110922

    Article  CAS  Google Scholar 

  43. Jiang Y, Chowdhury S, Balasubramanian R (2020) Efficient removal of bisphenol A and disinfection of waterborne pathogens by boron/nitrogen codoped graphene aerogels via the synergy of adsorption and photocatalysis under visible light. J Environ Chem Eng 8:104300. https://doi.org/10.1016/j.jece.2020.104300

    Article  CAS  Google Scholar 

  44. Yang K, Wang J, Chen X et al (2018) Application of graphene-based materials in water purification: from the nanoscale to specific devices. Environ Sci Nano 5:1264–1297. https://doi.org/10.1039/c8en00194d

    Article  CAS  Google Scholar 

  45. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  CAS  Google Scholar 

  46. Zhang F, Li Y-H, Li J-Y et al (2019) 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ Pollut 253:365–376. https://doi.org/10.1016/j.envpol.2019.06.089

    Article  CAS  Google Scholar 

  47. Bano Z, Mazari SA, Saeed RMY et al (2020) Water decontamination by 3D graphene based materials: a review. J Water Process Eng 36:101404. https://doi.org/10.1016/j.jwpe.2020.101404

    Article  Google Scholar 

  48. Karim AV, Selvaraj A (2021) Graphene composites in photocatalytic oxidation of aqueous organic contaminants—a state of art. Process Saf Environ Prot 146:136–160. https://doi.org/10.1016/j.psep.2020.08.042

    Article  CAS  Google Scholar 

  49. Olatunde OC, Onwudiwe DC (2021) Graphene-based composites as catalysts for the degradation of pharmaceuticals. Int J Environ Res Public Health 18:1529. https://doi.org/10.3390/ijerph18041529

    Article  CAS  Google Scholar 

  50. Khan F, Khan MS, Kamal S et al (2020) Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes. J Mater Chem C 8:15940–15955. https://doi.org/10.1039/D0TC03684F

    Article  CAS  Google Scholar 

  51. Wu T, Zhang B, Wu Z et al (2019) Three-dimensional reduced graphene oxide aerogel stabilizes molybdenum trioxide with enhanced photocatalytic activity for dye degradation. RSC Adv 9:37573–37583. https://doi.org/10.1039/C9RA08372C

    Article  CAS  Google Scholar 

  52. Zhang L, Wu L, Feng Z et al (2021) Adopting sulfur-atom sharing strategy to construct CoS2/MoS2 heterostructure on three-dimensional nitrogen-doped graphene aerogels: a novel photocatalyst for wastewater treatment. J Environ Chem Eng 9:104771. https://doi.org/10.1016/j.jece.2020.104771

    Article  CAS  Google Scholar 

  53. Bi Y, Yang Y, Shi X-L et al (2021) Bi2O3/BiVO4@graphene oxide van der Waals heterostructures with enhanced photocatalytic activity toward oxygen generation. J Colloid Interface Sci 593:196–203. https://doi.org/10.1016/j.jcis.2021.02.079

    Article  CAS  Google Scholar 

  54. Yang W, Tang S, Wei Z et al (2021) Separate-free BiPO4/graphene aerogel with 3D network structure for efficient photocatalytic mineralization by adsorption enrichment and photocatalytic degradation. Chem Eng J. https://doi.org/10.1016/j.cej.2021.129720

    Article  Google Scholar 

  55. Kowalkińska M, Dudziak S, Karczewski J et al (2021) Facet effect of TiO2 nanostructures from TiOF2 and their photocatalytic activity. Chem Eng J 404:126493. https://doi.org/10.1016/j.cej.2020.126493

    Article  CAS  Google Scholar 

  56. Joutsuka T, Yoshinari H, Yamauchi S (2021) Facet dependence of photocatalytic activity in anatase TiO2: combined experimental and DFT study. Bull Chem Soc Jpn 94:106–111. https://doi.org/10.1246/bcsj.20200236

    Article  Google Scholar 

  57. Chen L, Yang S, Zhang Q et al (2021) Rational design of {0 0 1}-faceted TiO2 nanosheet arrays/graphene foam with superior charge transfer interfaces for efficient photocatalytic degradation of toxic pollutants. Sep Purif Technol 265:118444. https://doi.org/10.1016/j.seppur.2021.118444

    Article  CAS  Google Scholar 

  58. Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem Eng J 310:41–62. https://doi.org/10.1016/j.cej.2016.10.064

    Article  CAS  Google Scholar 

  59. Zou L, Xiao X, Chu C, Chen B (2021) Facile synthesis of porous CoFe2O4/graphene aerogel for catalyzing efficient removal of organic pollutants. Sci Total Environ 775:143398. https://doi.org/10.1016/j.scitotenv.2020.143398

    Article  CAS  Google Scholar 

  60. He S, Yin R, Chen Y et al (2021) Consolidated 3D Co3Mn-layered double hydroxide aerogel for photo-assisted peroxymonosulfate activation in metronidazole degradation. Chem Eng J 423:130172. https://doi.org/10.1016/j.cej.2021.130172

    Article  CAS  Google Scholar 

  61. Yi Q, Tan J, Liu W et al (2020) Peroxymonosulfate activation by three-dimensional cobalt hydroxide/graphene oxide hydrogel for wastewater treatment through an automated process. Chem Eng J 400:125965. https://doi.org/10.1016/j.cej.2020.125965

    Article  CAS  Google Scholar 

  62. Dong S, Xia L, Chen X et al (2021) Interfacial and electronic band structure optimization for the adsorption and visible-light photocatalytic activity of macroscopic ZnSnO3/graphene aerogel. Compos Part B 215:108765. https://doi.org/10.1016/j.compositesb.2021.108765

    Article  CAS  Google Scholar 

  63. Rezaei A, Rezaei MR, Sayadi MH (2021) 3D network structure graphene hydrogel-Fe3O4@SnO2/Ag via an adsorption/photocatalysis synergy for removal of 2,4 dichlorophenol. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2021.03.048

    Article  Google Scholar 

  64. Liu R, Chen Z, Yao Y et al (2020) Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: a mini review. RSC Adv 10:29408–29418. https://doi.org/10.1039/D0RA05779G

    Article  Google Scholar 

  65. Liu J, Wei X, Sun W et al (2021) Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis. Environ Res 197:111136. https://doi.org/10.1016/j.envres.2021.111136

    Article  CAS  Google Scholar 

  66. Guo R-F, Liang P, Li X-Y, Liu Z-H (2021) Fabrication of a dual Z-scheme GACN/NiO/Ni3(BO3)2 composite with excellent photocatalytic activity for methylene blue and tetracycline removal. Sep Purif Technol 264:118414. https://doi.org/10.1016/j.seppur.2021.118414

    Article  CAS  Google Scholar 

  67. Yang Y, Xu L, Shen H, Wang J (2021) Construction of three-dimensional reduced graphene oxide wrapped nZVI doped with Al2O3 as the ternary Fenton-like catalyst: optimization, characterization and catalytic mechanism. Sci Total Environ 780:146576. https://doi.org/10.1016/j.scitotenv.2021.146576

    Article  CAS  Google Scholar 

  68. Zhang R, Wan W, Li D et al (2017) Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chin J Catal 38:313–320. https://doi.org/10.1016/S1872-2067(16)62568-8

    Article  CAS  Google Scholar 

  69. Zheng ALT, Farrag HN, Sabidi S et al (2021) Accessing the anti-microbial activity of cyclic peptide immobilized on reduced graphene oxide. Mater Lett 304:130621. https://doi.org/10.1016/j.matlet.2021.130621

    Article  CAS  Google Scholar 

  70. Singh P, Shandilya P, Raizada P et al (2020) Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab J Chem 13:3498–3520. https://doi.org/10.1016/j.arabjc.2018.12.001

    Article  CAS  Google Scholar 

  71. Zhang M, Chen Y, Chen B et al (2019) Fabrication of a three-dimensional visible-light-driven Ag–AgBr/TiO2/graphene aerogel composite for enhanced photocatalytic destruction of organic dyes and bacteria. New J Chem 43:5088–5098. https://doi.org/10.1039/C8NJ06057F

    Article  CAS  Google Scholar 

  72. Chen Y, Liang Y, Zhao M et al (2019) In situ ion exchange synthesis of Ag2S/AgVO3 graphene aerogels for enhancing photocatalytic antifouling efficiency. Ind Eng Chem Res 58:3538–3548. https://doi.org/10.1021/acs.iecr.8b05962

    Article  CAS  Google Scholar 

  73. Xin X, Li S, Zhang N et al (2019) 3D graphene/AgBr/Ag cascade aerogel for efficient photocatalytic disinfection. Appl Catal B 245:343–350. https://doi.org/10.1016/j.apcatb.2018.12.066

    Article  CAS  Google Scholar 

  74. Lin L, Xie Q, Zhang M et al (2020) Construction of Z-scheme Ag-AgBr/BiVO4/graphene aerogel with enhanced photocatalytic degradation and antibacterial activities. Colloids Surf A 601:124978. https://doi.org/10.1016/j.colsurfa.2020.124978

    Article  CAS  Google Scholar 

  75. Zheng ALT, Sabidi S, Ohno T et al (2022) Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. Chemosphere 286:131731. https://doi.org/10.1016/j.chemosphere.2021.131731

    Article  CAS  Google Scholar 

  76. Ma X, Wang Z, Yang H et al (2021) Enhanced bacterial disinfection by CuI–BiOI/rGO hydrogel under visible light irradiation. RSC Adv 11:20446–20456. https://doi.org/10.1039/D1RA02966E

    Article  CAS  Google Scholar 

  77. Karbasi M, Karimzadeh F, Raeissi K et al (2020) Improving visible light photocatalytic inactivation of E. coli by inducing highly efficient radical pathways through peroxymonosulfate activation using 3-D, surface-enhanced, reduced graphene oxide (rGO) aerogels. Chem Eng J 396:125189. https://doi.org/10.1016/j.cej.2020.125189

    Article  CAS  Google Scholar 

  78. Yin J, Gao D, Zhu X et al (2021) One-pot synthesis of 3D porous Bi7O9I3/N-doped graphene aerogel with enhanced photocatalytic activity for organic dye degradation in wastewater. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.03.293

    Article  Google Scholar 

  79. Song Y, Peng Y, Long NV et al (2021) Multifunctional self-assembly 3D Ag/g-C3N4/RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater. Appl Surf Sci 542:148584. https://doi.org/10.1016/j.apsusc.2020.148584

    Article  CAS  Google Scholar 

  80. Xiong T, Ye Y, Luo B et al (2021) Facile fabrication of 3D TiO2-graphene aerogel composite with enhanced adsorption and solar light-driven photocatalytic activity. Ceram Int 47:14290–14300. https://doi.org/10.1016/j.ceramint.2021.02.011

    Article  CAS  Google Scholar 

  81. Dong S, Cui L, Liu C et al (2019) Fabrication of 3D ultra-light graphene aerogel/Bi2WO6 composite with excellent photocatalytic performance: a promising photocatalysts for water purification. J Taiwan Inst Chem Eng 97:288–296. https://doi.org/10.1016/j.jtice.2019.02.016

    Article  CAS  Google Scholar 

  82. He H, Huang L, Zhong Z, Tan S (2018) Constructing three-dimensional porous graphene-carbon quantum dots/g-C3N4 nanosheet aerogel metal-free photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 441:285–294. https://doi.org/10.1016/j.apsusc.2018.01.298

    Article  CAS  Google Scholar 

  83. Mei J-Y, Qi P, Wei X-N et al (2019) Assembly and enhanced elimination performance of 3D graphene aerogel-zinc oxide hybrids for methylene blue dye in water. Mater Res Bull 109:141–148. https://doi.org/10.1016/j.materresbull.2018.09.034

    Article  CAS  Google Scholar 

  84. Kim C, Cho KM, Park K et al (2020) Ternary hybrid aerogels of g-C3N4/α-Fe2O3 on a 3D graphene network: an efficient and recyclable Z-scheme photocatalyst. ChemPlusChem 85:169–175. https://doi.org/10.1002/cplu.201900688

    Article  CAS  Google Scholar 

  85. Ding C, Li Z, Tan W et al (2018) 3D graphene aerogels/Sb2WO6 hybrid with enhanced photocatalytic activity under UV- and visible-light irradiation. Synth Met 246:137–143. https://doi.org/10.1016/j.synthmet.2018.10.010

    Article  CAS  Google Scholar 

  86. Bano Z, Saeed RMY, Zhu S et al (2020) Mesoporous CuS nanospheres decorated rGO aerogel for high photocatalytic activity towards Cr(VI) and organic pollutants. Chemosphere 246:125846. https://doi.org/10.1016/j.chemosphere.2020.125846

    Article  CAS  Google Scholar 

  87. Jiang Y, Chowdhury S, Balasubramanian R (2019) New insights into the role of nitrogen-bonding configurations in enhancing the photocatalytic activity of nitrogen-doped graphene aerogels. J Colloid Interface Sci 534:574–585. https://doi.org/10.1016/j.jcis.2018.09.064

    Article  CAS  Google Scholar 

  88. Liang Q, Ploychompoo S, Chen J et al (2020) Simultaneous Cr(VI) reduction and bisphenol A degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light. Chem Eng J 384:123256. https://doi.org/10.1016/j.cej.2019.123256

    Article  CAS  Google Scholar 

  89. Xiao W, Zhou W, Zhang Y et al (2016) Three-dimensional Zn 0.5 Cd 0.5 S/reduced graphene oxide hybrid aerogel: facile synthesis and the visible-light-driven photocatalytic property for reduction of Cr(VI) in water. J Nanomater 2016:1–11. https://doi.org/10.1155/2016/6201546

    Article  CAS  Google Scholar 

  90. Huang Y, Zhu C, Pan H et al (2017) Fabrication of AgBr/boron-doped reduced graphene oxide aerogels for photocatalytic removal of Cr(VI) in water. RSC Adv 7:36000–36006. https://doi.org/10.1039/C7RA05770A

    Article  CAS  Google Scholar 

  91. Jin S, Yang Y, Zhang J, Zheng H (2021) Preparation of a novel TiO2-graphene 3D framework material for efficient adsorption-photocatalytic removal of micro-organic contaminants from water. Mater Chem Phys 263:124339. https://doi.org/10.1016/j.matchemphys.2021.124339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology for the post-doctoral fellowship awarded. We would also like to thank Mr. Tithiphong Sukheeket for the visualization artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Andou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, A.L.T., Ohno, T. & Andou, Y. Recent Progress in Photocatalytic Efficiency of Hybrid Three-Dimensional (3D) Graphene Architectures for Pollution Remediation. Top Catal 65, 1634–1647 (2022). https://doi.org/10.1007/s11244-022-01610-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01610-9

Keywords

Navigation