Skip to main content
Log in

Promoting Effect of P in MoV Oxide-based Catalysts for Oxidative Desulfurization of Dibenzothiophene Compounds

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Mo-V oxide-based catalysts were prepared on phosphorus-modified alumina, and were evaluated in oxidative desulfurization (ODS) process of a model solution of sulfur compounds. Impregnation order method, oxidation state and metal loading of active phases were varied to evaluate the ODS performance. The catalysts were characterized by temperature programmed reduction (TPR), N2 adsorption–desorption, scanning electron microscopy (SEM–EDS), operando Raman spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). The ODS catalytic activity was discussed in function of the sulfones yields and the Mo and V oxide surface species. The results show that the addition of phosphorus increased the intrinsic activity of the monometallic and bimetallic catalysts in the ODS process. With the best catalytic formulation, a total sulfur removal of 93% was obtained, in 30 min operating at 60 °C, to obtain ultra-low S level. The high activity was related to the increment in the polymeric species of Mo and the incorporation of P in the tetrahedral sites of alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. https://www.epa.gov/diesel-fuel-standards/diesel-fuel-standards-and-rulemakings Accessed Jan 23, 2022

  2. Hossain MN, Park HC, Choi HS (2019) A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil. Catalysts 9(3):229–241

    Article  Google Scholar 

  3. Rajendran A, Cui TY, Fan HX, Yang ZF, Feng J, Li WY (2020) A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 8:2246–2285

    Article  CAS  Google Scholar 

  4. Taghizadeh M, Mehrvarz E, Taghipour A (2019) Polyoxometalate as an effective catalyst for the oxidative desulfurization of liquid fuels: a critical review. Rev Chem Eng 36(7):831–858. https://doi.org/10.1515/revce-2018-0058

    Article  CAS  Google Scholar 

  5. Stanislaus A, Marawi A, Rana MS (2010) Recent advances in the science and technology of ultralow sulfur diesel (ULSD) production. Catal Today 153(1–2):1–68. https://doi.org/10.1016/j.cattod.2010.05.011

    Article  CAS  Google Scholar 

  6. Zou J, Yan Lin Y, Wu S, Wu M (2021) Yang C (2021) Construction of bifunctional 3-D ordered mesoporous catalyst for oxidative desulfurization. Sep Purif Technol 264:118434. https://doi.org/10.1016/j.seppur.2021.118434

    Article  CAS  Google Scholar 

  7. Zou J, Yan Lin Y, Wu S, Wu M, Yang C (2021) Molybdenum dioxide nanoparticles anchored on nitrogen-doped carbon nanotubes as oxidative desulfurization catalysts: role of electron transfer in activity and reusability. Adv Funct Mater 31:2100442. https://doi.org/10.1002/adfm.202100442

    Article  CAS  Google Scholar 

  8. Lim XB, Ong WJ (2021) A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy. Nanoscale Horizons 6:588–633. https://doi.org/10.1039/D1NH00127B

    Article  CAS  PubMed  Google Scholar 

  9. Bakar WAWA, Ali R, Kadir AAA, Mokhtar NAW (2012) Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel, fuel process. Technol 101:78–84. https://doi.org/10.1016/j.fuproc.2012.04.004

    Article  CAS  Google Scholar 

  10. Campos-Martin JM, Capel-Sanchez MC (2021) Catalytic oxidative desulfurization of liquid fuels. ACS Symp Ser. https://doi.org/10.1021/bk-2021-1379.ch006

    Article  Google Scholar 

  11. Cedeño-Caero L, Hernández E, Pedraza F, Murrieta F (2005) Oxidative desulfurization of synthetic diesel using supported catalysts. Part I. Study of the operation conditions with a vanadium oxide-based catalyst. Catal Today 107–108:564–569. https://doi.org/10.1016/j.cattod.2005.07.017

    Article  CAS  Google Scholar 

  12. Maity SK, Ancheyta J, Rana MS, Rayo P (2005) Effect of phosphorus on activity of hydrotreating catalyst of Maya heavy crude. Catal Today 109(1–4):42–48. https://doi.org/10.1016/j.cattod.2005.08.010

    Article  CAS  Google Scholar 

  13. Wang SS, Yang GY (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115(11):4893–4962. https://doi.org/10.1021/cr500390v

    Article  CAS  PubMed  Google Scholar 

  14. Cedeño-Caero L, Navarro JF, Gutiérrez-Alejandre A (2006) Oxidative desulfurization of synthetic diesel using supported catalysts Part II. Effect of oxidant and nitrogen-compounds on extraction-oxidation process. Catal Today 116:562–568. https://doi.org/10.1016/j.cattod.2006.06.031

    Article  CAS  Google Scholar 

  15. Cedeño-Caero L, Gómez-Bernal H, Fraustro-Cuevas A, Guerra-Gomez H, Cuevas-García R (2007) Oxidative desulfurization of synthetic diesel using supported catalysts. Part III. Support effect on vanadium-based catalysts. Catal Today 133–135:244–254. https://doi.org/10.1016/j.cattod.2007.12.017

    Article  CAS  Google Scholar 

  16. Mokhtari B, Akbari A, Omidkhah M (2019) Superior deep desulfurization of real diesel over MoO3/Silica gel as an efficient catalyst for oxidation of refractory compounds. Energy Fuels 33(8):7276–7286. https://doi.org/10.1021/acs.energyfuels.9b01646

    Article  CAS  Google Scholar 

  17. Tu Y, Li T, Yu G, Wei L, Ta L, Zhou Z, Ren Z (2019) Study on modification and desulfurization performance of a molybdenum-based catalyst. Energy Fuels 33(9):8503–8510. https://doi.org/10.1021/acs.energyfuels.9b02132

    Article  CAS  Google Scholar 

  18. Alvarez-Amparán MA, Cedeño-Caero L, Cortes-Jácome MA, Toledo-Antonio JA (2017) Relationship between the catalytic activity and Mo–V surface species in bimetallic catalysts for the oxidative desulfurization of dibenzothiophenic compounds. React Kinet Mech Catal 122:869–886. https://doi.org/10.1007/s11144-017-1237-4

    Article  CAS  Google Scholar 

  19. Lopez-Luna M, Álvarez-Amparán MA, Cedeño-Caero L (2019) Performance of WOx-VOx based catalysts for ODS of dibenzothiophene compounds. J Taiwan Inst Chem Eng 95:175–184. https://doi.org/10.1016/j.jtice.2018.06.010

    Article  CAS  Google Scholar 

  20. Gonzalez-Garcia O, Cedeño-Caero L (2010) V-Mo based catalysts for ODS of diesel fuel. Part II. Catalytic performance and stability after redox cycles. Catal Today 150:237–243. https://doi.org/10.1016/j.cattod.2009.08.019

    Article  CAS  Google Scholar 

  21. Chen L, Ren JT, Yuan ZY (2020) Atomic heterojunction-induced electron interaction in P-doped g-C3N4 nanosheets supported V-based nanocomposites for enhanced oxidative desulfurization. Chem Eng J 387:124164. https://doi.org/10.1016/j.cej.2020.124164

    Article  CAS  Google Scholar 

  22. Abdalla ZEA, Li B, Tufail A (2009) Preparation of phosphate promoted Na2WO4/Al2O3 catalyst and its application for oxidative desulfurization. J Ind Eng Chem 15(6):780–783. https://doi.org/10.1016/j.jiec.2009.09.026

    Article  CAS  Google Scholar 

  23. Moslemi A, Najafi C, Najafi SJ, Rezaei S, Barati M (2019) VOHPO4.5H2O/KIT-6 composites: preparation and their application in extractive and catalytic oxidation desulfurization of benzothiophene and dibenzothiphene. J Taiwan Inst Chem Eng 97:237–246. https://doi.org/10.1016/j.jtice.2019.01.030

    Article  CAS  Google Scholar 

  24. Mirante F, Dias L, Silva M, Ribeiro SO, Corvo MC, Castro B, Granadeiro MC, Balula SS (2018) Efficient heterogeneous polyoxometalate-hybrid catalysts for the oxidative desulfurization of fuels. Catal Commun 104:1–8. https://doi.org/10.1016/j.catcom.2017.10.006

    Article  CAS  Google Scholar 

  25. Alvarez-Amparán MA, Cedeño-Caero L (2017) MoOx-VOx based catalysts for the oxidative desulfurization of refractory compounds: influence of MoOx-VOx interaction on the catalytic performance. Catal Today 282:133–139. https://doi.org/10.1016/j.cattod.2016.07.002

    Article  CAS  Google Scholar 

  26. Weckhuysen BM, Keller DE (2003) Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today 78:25–46. https://doi.org/10.1016/S0920-5861(02)00323-1

    Article  CAS  Google Scholar 

  27. Wachs IE, Chen Y, Jehng JM, Briand LE, Tanaka T (2003) Molecular structure and reactivity of the group V metal oxides. Catal Today 78:13–24. https://doi.org/10.1016/S0920-5861(02)00337-1

    Article  CAS  Google Scholar 

  28. Cedeño-Caero L, Alvarez-Amparan MA (2014) Performance of molybdenum oxide in spent hydrodesulfurization catalysts applied on the oxidative desulfurization process of dibenzothiophene compounds. Reac Kinet Mech Cat 113:115–131. https://doi.org/10.1007/s11144-014-0729-8

    Article  CAS  Google Scholar 

  29. Derkaoui I, Khenfouch M, Elmokri I, Mothudi BM, Dhlamini MS, Moloi SJ, Zorkani I, Jorio A, Maaza M (2017) Structural and optical properties of hydrothermally synthesized vanadium oxides nanobelts. IOP Conf. Ser.: Mater Sci Eng 186:012007. https://doi.org/10.1088/1757-899X/186/1/012007

    Article  Google Scholar 

  30. Eon JG, Olier R, Volta JC (1994) Oxidative dehydrogenation of propane on γ-Al2O3 supported vanadium oxides. J Catal 145:318–326. https://doi.org/10.1006/jcat.1994.1040

    Article  CAS  Google Scholar 

  31. Thielemann JP, Ressler T, Walter A, Tzolova-Müller G, Hess C (2011) Structure of molybdenum oxide supported on silica SBA-15 studied by Raman, UV–Vis and X-ray absorption spectroscopy. Appl Catal A 399:28–34. https://doi.org/10.1016/j.apcata.2011.03.032

    Article  CAS  Google Scholar 

  32. Plyuto YV, Babich IV, Plyuto IV, Van Langeveld AV, Moulijn JA (1997) Synthesis and characterization of molybdenum (VI) oxo-species on the surface of fumed alumina and silica. Colloids Surfaces A Physicochem Eng Aspects 125:225–230. https://doi.org/10.1016/S0927-7757(97)00018-6

    Article  CAS  Google Scholar 

  33. Salavati H, Rasouli N (2011) Preparation, characterization and heterogeneous catalytic activity of heteropolyanion/polyaniline nanocomposite. Appl Surf Sci 257:4532–4538. https://doi.org/10.1016/j.apsusc.2010.10.052

    Article  CAS  Google Scholar 

  34. Mitran G, Neat F, Neat S, Trandafir MM, Florea M (2020) VAlPOs as Efficient catalysts for glycerol conversion to methanol. Catalysts 10(7):728–748. https://doi.org/10.3390/catal10070728

    Article  CAS  Google Scholar 

  35. Del Nero MC, Galindo C, Barillon R, Halter H, Madé B (2010) Surface reactivity of Al2O3 and mechanisms of phosphate sorption: In situ ATR-FTIR spectroscopy and ζ potential studies. J Colloid Interface Sci 342(2):437–444. https://doi.org/10.1016/j.jcis.2009.10.057

    Article  CAS  PubMed  Google Scholar 

  36. Roy T, Wisser D, Rivallan M, Valero MC, Corre T, Delpoux O, Pirngruber GD, Lefèvre G (2021) Phosphate adsorption on γ-Alumina: a surface complex model based on surface characterization and zeta potential measurements. J Phys Chem C 125(20):10909–10918. https://doi.org/10.1021/acs.jpcc.0c11553

    Article  CAS  Google Scholar 

  37. Elzinga E, Sparks D (2007) Phosphate adsorption onto hematite: an in-situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J Colloid Interface Sci 308(1):53–70. https://doi.org/10.1016/j.jcis.2006.12.061

    Article  CAS  PubMed  Google Scholar 

  38. Blanco-Bonilla F, Lopez-Pedrajas S, Luna D, Marinas JM, Bautista FM (2016) Vanadium oxides supported on amorphous aluminum phosphate: structural and chemical characterization and catalytic performance in the 2-propanol reaction. J Mol Catal A: Chem 416:105–116. https://doi.org/10.1016/j.molcata.2016.02.026

    Article  CAS  Google Scholar 

  39. Bond CG, Tahir F (1991) Vanadium oxide monolayer catalysts preparation, characterization and catalytic activity. Appl Catal A 71:1–31. https://doi.org/10.1016/0166-9834(91)85002-D

    Article  CAS  Google Scholar 

  40. Komandur VR, Kishan G, Ramesh K, Praveen Kumar C, Vidyasagar G (2003) Synthesis, characterization, and catalytic properties of vanadium oxide catalysts supported on AlPO4. Langmuir 19(11):4548–4554. https://doi.org/10.1021/la0203943

    Article  CAS  Google Scholar 

  41. Kamiya Y, Ueki S, Hiyoshi N, Yamamoto N, Okuhara T (2003) Preparation of catalyst precursors for selective oxidation of n-butane by exfoliation–reduction of VOPO4·2H2O in primary alcohol. Catal Today 78:281–290. https://doi.org/10.1016/S0920-5861(02)00319-X

    Article  CAS  Google Scholar 

  42. Xiao-Hong G, Qing L, Gang-Hao C, Chii S (2005) Surface complexation of condensed phosphate to aluminum hydroxide: an ATR-FTIR spectroscopic investigation. J Colloid Interface Sci 289(2):319–327. https://doi.org/10.1016/j.jcis.2004.08.041

    Article  CAS  Google Scholar 

  43. Busca G (2002) Differentiation of mono-oxo and polyoxo and of monomeric and polymeric vanadate, molybdate and tungstate species in metal oxide catalysts by IR and Raman spectroscopy. J Raman Spectrosc 33(5):348–358. https://doi.org/10.1002/jrs.867

    Article  CAS  Google Scholar 

  44. Kokorin AI, Kulak AI, Tomski IS, Rufov YN (2013) Spectroscopy of mixed molybdenum-vanadium oxides and catalytic oxidation of toluene. Russ J Phys Chem B 7(3):255–261. https://doi.org/10.1134/S1990793113030044

    Article  CAS  Google Scholar 

  45. Aminzadeh A, Sarikhani-fard H (1999) Raman spectroscopic study of Ni/Al2O3 catalyst. Spectrochim Acta Part A Mol Biomol Spectrosc 55:1421–1425. https://doi.org/10.1016/S1386-1425(98)00312-6

    Article  Google Scholar 

  46. Bañares MA, Wachs IE (2002) Molecular structures of supported metal oxide catalysts under different environments. J Raman Spectrosc 33(5):359–380. https://doi.org/10.1002/jrs.866

    Article  CAS  Google Scholar 

  47. Baddour-Hadjean R, Smirnov MB, Smirnov KS, Yu Kazimirov V, Gallardo-Amores JM, Amador U, Arroyo de Dompablo ME, Pereira-Ramos JP (2012) Lattice Dynamics of β-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph. Inorg Chem 51(5):3194–3201. https://doi.org/10.1021/ic202651b

    Article  CAS  PubMed  Google Scholar 

  48. Zili W, Hack-Sung K, Stair PC, Rugmini S, Jackson DS (2005) On the structure of vanadium oxide supported on aluminas: UV and visible Raman spectroscopy, UV−visible diffuse reflectance spectroscopy, and temperature programmed reduction studies. J Phys Chem B 109(7):2793–2800. https://doi.org/10.1021/jp046011m

    Article  CAS  Google Scholar 

  49. Sanchez C, Livage J, Lucazeau G (1982) Infrared and Raman study of amorphous V2O5. J. Raman Spectrosc. 12(1):68–72. https://doi.org/10.1002/jrs.1250120110

    Article  CAS  Google Scholar 

  50. Quinet O, Champagne B, Rodriguez V (2006) Experimental and theoretical investigation of the Raman and hyper-Raman spectra of acetonitrile and its derivatives. J Chem Phys 124:244312. https://doi.org/10.1063/1.2208350

    Article  CAS  PubMed  Google Scholar 

  51. Kamata K, Yonehara K, Sumida Y, Hirata K, Nojima S, Mizuno N (2011) Efficient heterogeneous epoxidation of alkenes by a supported tungsten oxide catalyst. Angew Chem 123:12268–12272. https://doi.org/10.1002/ange.201106064

    Article  Google Scholar 

  52. Mestl G, Ruiz P, Delmon B, Knozinger H (1994) Oxygen-exchange properties of MoO3: an in-situ Raman spectroscopy study. J Phys Chem 98(44):11269–11275. https://doi.org/10.1021/j100095a007

    Article  CAS  Google Scholar 

  53. Vuurman MA, Wachs IE (1992) In situ Raman spectroscopy of alumina-supported metal oxide catalysts. J Phys Chem 96(12):5008–5016. https://doi.org/10.1021/j100191a051

    Article  CAS  Google Scholar 

  54. López-Luna M, Taboada-Ortega MA, Alvarez-Amparán MA, Cedeño-Caero L (2021) Effect of iron incorporation on W based catalysts for oxidative desulfurization of dibenzothiophene compounds. Catal Today, in Press. https://doi.org/10.1016/j.cattod.2021.08.007

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by project PAPIIT IN-104520 of DGAPA-UNAM. V. Martinez C. acknowledges the support of DGAPA through the postdoctoral research grant of “Programa de Becas posdoctorales de la UNAM”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Cedeño-Caero.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5242 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Cornejo, V., López-Luna, M. & Cedeño-Caero, L. Promoting Effect of P in MoV Oxide-based Catalysts for Oxidative Desulfurization of Dibenzothiophene Compounds. Top Catal 65, 1273–1285 (2022). https://doi.org/10.1007/s11244-022-01609-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01609-2

Keywords

Navigation