Skip to main content
Log in

In-Silico Screening the Nitrogen Reduction Reaction on Single-Atom Electrocatalysts Anchored on MoS2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We show that a Single-Atom Electrocatalyst (SAC) for the Nitrogen Reduction Reaction (NRR) can provide an environmentally green alternative to the Haber–Bosch high-temperature high-pressure process, replacing the water gas shift production of H2 with H extracted from water. Anchoring the single atom on a two-dimensional substrate provides control to tune NRR catalytic performance toward a SAC possessing high utilization, high activity, and high selectivity. Experimental results suggest that this can significantly improve the activity and selectivity of NRR, but the specific reaction mechanism remains uncertain. This makes it difficult to select new catalytic materials for further optimization. Here we use Density Functional Theory to study the NRR catalytic mechanism on a catalytic model using a MoS2 substrate to support a single atom site. We correct for solvation effects on the electrochemical reactions. We started with Fe@MoS2, for which there are promising experimental reports, and conducted a systematic study of the NRR reaction mechanisms. These results show that N2 adsorption, hydrogenation of N2, desorption of NH3, and Hydrogen Evolution are all critical steps affecting the reaction rates. Based on these steps, we scanned 23 transition metal elements to find improved catalysts. We identified Ir@MoS2 (Mo top site) as the best candidate, predicted to have good catalytic activity and selectivity with 64.11% Faraday Efficiency. These results on the mechanism for NRR and the in silico search for alternative catalysts provide new promising targets for synthesizing novel and efficient SAC@MoS2 NRR catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Foster SL, Bakovic SIP, Duda RD, Maheshwari S, Milton RD, Minteer SD, Janik MJ, Renner JN, Greenlee LF (2018) Nat Catal 1:490–500

    Article  Google Scholar 

  2. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  3. Su H, Chen L, Chen Y, Si R, Wu Y, Wu X, Geng Z, Zhang W, Zeng J (2020) Angew Chem Int Ed Engl 59:20411–20416

    Article  CAS  PubMed  Google Scholar 

  4. Capdevila-Cortada M (2019) Electrifying the Haber-Bosch. Nat Catal 2:1055

    Article  Google Scholar 

  5. Suryanto BHR, Du H-L, Wang D, Chen J, Simonov AN, MacFarlane DR (2019) Nat Catal 2:290–296

    Article  CAS  Google Scholar 

  6. Zhang L, Ji X, Ren X, Ma Y, Shi X, Tian Z, Asiri AM, Chen L, Tang B, Sun X (2018) Adv Mater 30:1800191

    Article  Google Scholar 

  7. Chen LY, Kuo TC, Hong ZS, Cheng MJ, Goddard WA (2019) Phys Chem Chem Phys 21:17605–17612

    Article  CAS  PubMed  Google Scholar 

  8. Bao D, Zhang Q, Meng F-L, Zhong H-X, Shi M-M, Zhang Y, Yan J-M, Jiang Q, Zhang X-B (2017) Adv Mater 29:1604799

    Article  Google Scholar 

  9. Yang D, Chen T, Wang Z (2017) J Mater Chem A 5:18967–18971

    Article  CAS  Google Scholar 

  10. Logadóttir Á, Nørskov JK (2003) J Catal 220:273–279

    Article  Google Scholar 

  11. Xue Z-H, Zhang S-N, Lin Y-X, Su H, Zhai G-Y, Han J-T, Yu Q-Y, Li X-H, Antonietti M, Chen J-S (2019) J Am Chem Soc 141:14976–14980

    Article  CAS  PubMed  Google Scholar 

  12. Das A, Nair AS, Pathak B (2020) J Phys Chem C 124:20193–20202

    Article  CAS  Google Scholar 

  13. Ma X, Hu J, Zheng M, Li D, Lv H, He H, Huang C (2019) Appl Surf Sci 489:684–692

    Article  CAS  Google Scholar 

  14. Abghoui Y, Garden AL, Hlynsson VF, Björgvinsdóttir S, Ólafsdóttir H, Skúlason E (2015) Phys Chem Chem Phys 17:4909–4918

    Article  CAS  PubMed  Google Scholar 

  15. Abghoui Y, Skúlason E (2017) J Phys Chem C 121:24036–24045

    Article  CAS  Google Scholar 

  16. Ramaiyan KP, Ozden S, Maurya S, Kelly D, Babu SK, Benavidez A, Garzon FG, Kim YS, Kreller CR, Mukundan R (2020) J Electrochem Soc 167:044506

    Article  CAS  Google Scholar 

  17. Huang L, Wu J, Han P, Al-Enizi AM, Almutairi TM, Zhang L, Zheng G (2019) Small Methods 3:1800386

    Article  Google Scholar 

  18. Xiang X, Wang Z, Shi X, Fan M, Sun X (2018) ChemCatChem 10:4530–4535

    Article  CAS  Google Scholar 

  19. Ye TN, Park SW, Lu Y, Li J, Sasase M, Kitano M, Tada T, Hosono H (2020) Nature 583:391–395

    Article  CAS  PubMed  Google Scholar 

  20. Lü F, Zhao S, Guo R, He J, Peng X, Bao H, Fu J, Han L, Qi G, Luo J, Tang X, Liu X (2019) Nano Energy 61:420–427

    Article  Google Scholar 

  21. Yang Y, Zhang L, Hu Z, Zheng Y, Tang C, Chen P, Wang R, Qiu K, Mao J, Ling T, Qiao SZ (2020) Angew Chem Int Ed Engl 59:4525–4531

    Article  CAS  PubMed  Google Scholar 

  22. Yang T, Song TT, Zhou J, Wang S, Chi D, Shen L, Yang M, Feng YP (2020) Nano Energy 68:104304

    Article  CAS  Google Scholar 

  23. Howard JB, Rees DC (1996) Chem Rev 96:2965–2982

    Article  CAS  PubMed  Google Scholar 

  24. Ling F, Liu X, Jing H, Chen Y, Zeng W, Zhang Y, Kang W, Liu J, Fang L, Zhou M (2018) Phys Chem Chem Phys 20:26083–26090

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Zhang H, Wu T, Wang Q, van der Spoel D (2017) J Chem Theory Comput 13:1034–1043

    Article  CAS  PubMed  Google Scholar 

  26. Kresse G, Hafner J (1993) Phys Rev B 48:13115–13118

    Article  CAS  Google Scholar 

  27. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  28. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  30. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  31. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  32. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  33. Makov G, Payne MC (1995) Phys Rev B 51:4014–4022

    Article  CAS  Google Scholar 

  34. Neugebauer J, Scheffler M (1992) Phys Rev B 46:16067–16080

    Article  CAS  Google Scholar 

  35. Mathew K, Kolluru VSC, Mula S, Steinmann SN, Hennig RG (2019) J Chem Phys 151:234101

    Article  PubMed  Google Scholar 

  36. Qian J, An Q, Fortunelli A, Nielsen RJ, Goddard WA III (2018) J Am Chem Soc 140:6288–6297

    Article  CAS  PubMed  Google Scholar 

  37. An Q, Shen Y, Fortunelli A, Goddard WA III (2018) J Am Chem Soc 140:17702–17710

    Article  CAS  PubMed  Google Scholar 

  38. Singh AR, Rohr BA, Statt MJ, Schwalbe JA, Cargnello M, Nørskov JK (2019) ACS Catal 9:8316–8324

    Article  CAS  Google Scholar 

  39. Bjork J (2016) J Phys Chem C 120:21716–21721

    Article  Google Scholar 

  40. Su Y-Q, Zhang L, Wang Y, Liu J-X, Muravev V, Alexopoulos K, Filot IAW, Vlachos DG, Hensen EJM (2020) npj Comput Mater 6:144. https://doi.org/10.1038/s41524-020-00411-6

    Article  CAS  Google Scholar 

  41. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  42. Skulason E, Bligaard T, Gudmundsdottir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jonsson H, Norskov JK (2012) Phys Chem Chem Phys 14:1235–1245

    Article  CAS  PubMed  Google Scholar 

  43. Arashiba K, Miyake Y, Nishibayashi Y (2011) Nat Chem 3:120–125

    Article  CAS  PubMed  Google Scholar 

  44. Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) J Am Chem Soc 137:5666–5669

    Article  CAS  PubMed  Google Scholar 

  45. Zhao W, Zhang L, Luo Q, Hu Z, Zhang W, Smith S, Yang J (2019) ACS Catal 9:3419–3425

    Article  CAS  Google Scholar 

  46. Guo J, Tadesse Tsega T, Ul Islam I, Iqbal A, Zai J, Qian X (2020) Chin Chem Lett 2020(31):2487–2490

    Article  Google Scholar 

  47. Guo J, Wang M, Xu L, Li X, Iqbal A, Sterbinsky GE, Yang H, Xie M, Zai J, Feng Z, Cheng T, Qian X (2021) Chin J Chem 39:1898–1904

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TC thanks to the National Natural Science Foundation of China (21903058), the Natural Science Foundation of Jiangsu Higher Education Institutions (SBK20190810), the Jiangsu Province High-Level Talents (JNHB-106), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for financial support. HY thanks China Postdoctoral Science Foundation (2019M660128) for financial support. This work was partly supported by the Collaborative Innovation Center of Suzhou Nano Science & Technology. WAG thanks NSF (CBET-2005250) for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Cheng or William A. Goddard III.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Xie, M., Yang, H. et al. In-Silico Screening the Nitrogen Reduction Reaction on Single-Atom Electrocatalysts Anchored on MoS2. Top Catal 65, 234–241 (2022). https://doi.org/10.1007/s11244-021-01546-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01546-6

Keywords

Navigation