Skip to main content
Log in

Computational Study of Key Mechanistic Details for a Proposed Copper (I)-Mediated Deconstructive Fluorination of N-Protected Cyclic Amines

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Using calculations, we show that a proposed Cu(I)-mediated deconstructive fluorination of N-benzoylated cyclic amines with Selectfluor® is feasible and may proceed through: (a) substrate coordination to a Cu(I) salt, (b) iminium ion formation followed by conversion to a hemiaminal, and (c) fluorination involving C–C cleavage of the hemiaminal. The iminium ion formation is calculated to proceed via a F-atom coupled electron transfer (FCET) mechanism to form, formally, a product arising from oxidative addition coupled with electron transfer (OA + ET). The subsequent β-C–C cleavage/fluorination of the hemiaminal intermediate may proceed via either ring-opening or deformylative fluorination pathways. The latter pathway is initiated by opening of the hemiaminal to give an aldehyde, followed by formyl H-atom abstraction by a TEDA2+ radical dication, decarbonylation, and fluorination of the C3-radical center by another equivalent of Selectfluor®. In general, the mechanism for the proposed Cu(I)- mediated deconstructive C–H fluorination of N-benzoylated cyclic amines (LH) by Selectfluor® was calculated to proceed analogously to our previously reported Ag(I)-mediated reaction. In comparison to the Ag(I)-mediated process, in the Cu(I)-mediated reaction the iminium ion formation and hemiaminal fluorination have lower associated energy barriers, whereas the product release and catalyst re-generation steps have higher barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9

Similar content being viewed by others

References

  1. Musaev DG, Figg TM, Kaledin AL (2014) Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C-H bond functionalization. Chem Soc Rev 43:5009–5031

    Article  CAS  PubMed  Google Scholar 

  2. Sperger T, Sanhueza IA, Schoenebeck F, Kalvet I (2015) Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem Rev 115:9532–9586

    Article  CAS  PubMed  Google Scholar 

  3. Yang YF, Hong X, Yu JQ, Houk KN (2017) Experimental-computational synergy for selective Pd(II)-catalyzed C-H activation of Aryl and Alkyl groups. Acc Chem Res 50:2853–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen G, Gong W, Zhuang Z, Andra MS, Chen YQ, Hong X, Yang YF, Liu T, Houk KN, Yu JQ (2016) Ligand-accelerated enantioselective methylene C(sp3)-H bond activation. Science 353:1023–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang YF, Chen G, Hong X, Yu JQ, Houk KN (2017) The origins of dramatic differences in five-membered vs six-membered chelation of Pd(II) on efficiency of C(sp3)-H bond activation. J Am Chem Soc 139:8514–8521

    Article  CAS  PubMed  Google Scholar 

  6. Besora M, Olmos A, Gava R, Noverges B, Asensio G, Caballero A, Maseras F, Pérez PJ (2020) A quantitative model for alkane nucleophilicity based on C−H bond structural/topological descriptors. Angew Chem Int Ed 59:3112–3116

    Article  CAS  Google Scholar 

  7. Funes-Ardoiz I, Maseras F (2018) Oxidative coupling mechanisms: current state of understanding. ACS Catal 8:1161–1172

    Article  CAS  Google Scholar 

  8. Qi X, Wang J, Dong Z, Dong G, Liu P (2020) Compatibility score for rational electrophile selection in Pd/NBE cooperative catalysis. Chem 6:2810–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang HJ, Zhong XM, Yu J, Zhang Y, Zhang X, Wu YD, Gong LZ (2019) Assembling a hybrid Pd catalyst from a chiral anionic CoIII complex and ligand for asymmetric C(sp3)−H functionalization. Angew Chem Int Ed 58:1803–1807

    Article  CAS  Google Scholar 

  10. Cheng GJ, Yang YF, Liu P, Chen P, Sun TY, Li G, Zhang X, Houk KN, Yu JQ, Wu YD (2014) Role of N-acyl amino acid ligands in Pd(II)-catalyzed remote C-H activation of tethered arenes. J Am Chem Soc 136:894–897

    Article  CAS  PubMed  Google Scholar 

  11. Davies DL, Macgregor SA, McMullin CL (2017) Computational studies of carboxylate-assisted C-H activation and functionalization at group 8–10 transition metal centers. Chem Rev 117:8649–8709

    Article  CAS  PubMed  Google Scholar 

  12. Gorelsky SI (2013) Origins of regioselectivity of the palladium-catalyzed (aromatic) CH bond metalation-deprotonation. Coord Chem Rev 257:153–164

    Article  CAS  Google Scholar 

  13. McLarney BD, Hanna S, Musaev DG, France S (2019) Predictive model for the [Rh2(esp)2]-catalyzed intermolecular C(sp3)–H bond insertion of β-carbonyl ester carbenes: interplay between theory and experiment. ACS Catal 9:4526–4538

    Article  CAS  Google Scholar 

  14. Kaledin A, Shi BF, Yu JQ (2012) Key mechanistic features of enantioselective C-H bond activation reactions catalyzed by [(Chiral Mono-N-Protected Amino Acid)-Pd(II)] complexes. J Am Chem Soc 134:1690–1698

    Article  PubMed  Google Scholar 

  15. Haines BE, Musaev DG (2015) Factors impacting the mechanism of the mono-N-protected amino acid ligand-assisted and directing-group-mediated C-H activation catalyzed by Pd (II) complex. ACS Catal 5:830–840

    Article  CAS  Google Scholar 

  16. Haines BE, Xu HY, Verma P, Wang X, Yu JQ, Musaev DG (2015) Mechanistic details of Pd(II)-catalyzed C-H iodination with molecular I2: oxidative addition vs electrophilic cleavage. J Am Chem Soc 137:9022–9031

    Article  CAS  PubMed  Google Scholar 

  17. Haines BE, Berry JF, Yu JQ, Musaev DG (2016) Factors controlling stability and reactivity of dimeric Pd (II)-complexes in C-H functionalization catalysis. ACS Catal 6:829–839

    Article  CAS  Google Scholar 

  18. Haines BE, Yu JQ, Musaev DG (2017) Enantioselectivity model for Pd-Catalyzed C-H functionalization mediated by the mono-N-protected amino acid (MPAA) family of ligands. ACS Catal 7:4344–4354

    Article  CAS  Google Scholar 

  19. Cheng GJ, Chen P, Sun TY, Zhang XH, Yu JQ, Wu YD (2015) A combined IM-MS/DFT study on [Pd(MPAA)]-catalyzed enantioselective C-H activation: relay of chirality through a rigid framework. Chem Eur J 21:11180–11188

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Chung LW, Wu YD (2016) New mechanistic insights on the selectivity of transition-metal-catalyzed organic reactions: the role of computational chemistry. Acc Chem Res 49:1302–1310

    Article  CAS  PubMed  Google Scholar 

  21. Kim HT, Ha H, Kang G, Kim OS, Ryu H, Biswas AK, Lim SM, Baik MH, Joo JM (2017) Ligand-controlled regiodivergent C−H alkenylation of pyrazoles and its application to the synthesis of indazoles. Angew Chem Int Ed 56:16262–16266

    Article  CAS  Google Scholar 

  22. Heo J, Ahn H, Won J, Son JG, Shon HK, Lee TG, Han SW, Baik MH (2020) Electro-inductive effect: electrodes as functional groups with tunable electronic properties”. Science 370:214–219

    Article  CAS  PubMed  Google Scholar 

  23. Liao K, Negretti S, Musaev DG, Bacsa J, Davies HML (2016) Site-selective and stereoselective functionalization of unactivated C-H bonds. Nature 533:230–234

    Article  CAS  PubMed  Google Scholar 

  24. Qin CM, Boyarskikh V, Hansen JH, Hardcastle KI, Musaev DG, Davies HML (2011) D2-symmetric dirhodium catalyst derived from a 1,2,2-triarylcyclopropanecarboxylate ligand: design, synthesis and application. J Am Chem Soc 133:19198–19204

    Article  CAS  PubMed  Google Scholar 

  25. Liao KB, Yang YF, Lie YZ, Sanders JN, Houk KN, Musaev DG, Davies HML (2018) Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C-H bonds. Nature Chem 10:1048–1055

    Article  CAS  Google Scholar 

  26. Liao K, Pickel TC, Boyarskikh V, Bacsa J, Musaev DG, Davies HML (2017) Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds. Nature 551:609–613

    Article  CAS  PubMed  Google Scholar 

  27. Kisan HK, Sunoj RB (2015) Axial coordination dichotomy in dirhodium carbenoid catalysis: a curious case of cooperative asymmetric dual-catalytic approach toward amino esters. J Org Chem 80:2192–2197

    Article  CAS  PubMed  Google Scholar 

  28. Liu H, Duan JX, Qu DY, Guo LP, Xie ZZ (2016) Mechanistic insights into asymmetric C-H insertion cooperatively catalyzed by a dirhodium(II) complex and chiral phosphoric acid. Organometallics 35:2003–2009

    Article  CAS  Google Scholar 

  29. Fu JT, Ren Z, Bacsa J, Musaev DG, Davies HML (2018) Desymmetrization of cyclohexanes by site- and stereoselective C-H functionalization. Nature 564:395–397

    Article  CAS  PubMed  Google Scholar 

  30. Gair JJ, Haines BE, Filatov AS, Musaev DG, Lewis JC (2017) Mono- N -protected amino acid ligands stabilize dimeric palladium(II) complexes of importance to C-H functionalization. Chem Sci 8:5746–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu LP, Rogue JB, Sarpong R, Musaev DG (2020) Reactivity and selectivity controlling factors in the Pd/diakylbiarylphosphine-catalyzed C-C cleavage/cross-coupling of an N-fused bicyclo a-hydroxy-b-lactam“. J Am Chem Soc 142:21140–21152

    Article  CAS  PubMed  Google Scholar 

  32. Salazar CA, Flesch KN, Haines BE, Zhou PS, Musaev DG, Stahl SS (2020) Palladium-catalyzed C-H oxidative arylation accessing high turnover with O2. Science 370:1454–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu LP, Haines BE, Ajitha MJ, Murakami K, Itami K, Musaev DG (2020) Roles of base in the Pd-catalyzed annulative chlorophenylene dimerization. ACS Catal 10:3059–3073

    Article  CAS  Google Scholar 

  34. Haines BE, Sarpong R, Musaev DG (2018) On the generality and strength of transition metal β–effects. J Am Chem Soc 140:10612–10618

    Article  CAS  PubMed  Google Scholar 

  35. Usui K, Haines BE, Musaev DG, Sarpong R (2018) Understanding C-H functionalization site-selectivity in a directed alkynylation. ACS Catal 8:4516–4527

    Article  CAS  Google Scholar 

  36. Haines BE, Yu JQ, Musaev DG (2018) The mechanism of directed Ni(II)-catalyzed C-H iodination with molecular iodine. Chem Sci 9:1144–1154

    Article  CAS  PubMed  Google Scholar 

  37. Haines BE, Yu JQ, Musaev DG (2017) An enantioselectivity model for Pd-catalyzed C-H functionalization mediated by the mono-N-protected amino acid (MPAA) family of ligands. ACS Catal 7:4344–4354

    Article  CAS  Google Scholar 

  38. Gair JJ, Haines BE, Filatov AS, Musaev DG, Lewis JC (2017) Remarkable dimeric structural motif of palladium (II) mono-N-protected amino acid complexes and its importance in C-H functionalization. Chem Sci 8:5746–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plata RE, Hill DE, Haines BE, Musaev DG, Chu L, Hickey DP, Sigman MS, Yu JQ, Blackmond DG (2017) A role for Pd(IV) in catalytic enantioselective C-H functionalization with monoprotected amino acid ligands under mild conditions. J Am Chem Soc 139:9238–9245

    Article  CAS  PubMed  Google Scholar 

  40. Varela-Álvarez A, Yang T, Jennings H, Kornecki KP, MacMillan SN, Lancaster KM, Mack JBC, Du Bois J, Berry JF, Musaev DG (2016) Rh2(II, III) catalysts with chelating carboxylate and carboxamidate supports: electronic structure and nitrene transfer reactivity. J Am Chem Soc 138:2327–2341

    Article  PubMed  Google Scholar 

  41. HainesBE SY, Segawa Y, Itami K, Musaev DG (2016) Flexible reaction pocket on bulky diphosphine-Ir complex controls regioselectivity in para-selective C-H borylation of arenes. ACS Catal 6:7536–7546

    Article  Google Scholar 

  42. Reyes RL, Sato M, Iwai T, Suzuki K, Maeda S, Sawamura M (2020) Asymmetric remote C-H borylation of aliphatic amides and esters with a modular iridium catalyst. Science 369:970–974

    Article  CAS  PubMed  Google Scholar 

  43. Muto K, Yamaguchi J, Musaev DG, Itami K (2015) Decarbonylative organoboron cross-coupling by nickel catalysis. The ester Suzuki-Miyaura coupling. Nature Commun 6:1–8

    Article  Google Scholar 

  44. Figg TM, Park S, Park J, Chang S, Musaev DG (2014) Comparative mechanistic investigations of direct C-H amination of benzamides catalyzed by Cp*-based group 9 metal complexes. Organometallics 33:4076–4085

    Article  CAS  Google Scholar 

  45. Xu H, Muto K, Yamaguchi J, Zhao C, Itami K, Musaev DG (2014) Key mechanistic features of Ni-catalyzed C-H/C–O biaryl coupling of azoles and naphthalen-2-yl pivalates. J Am Chem Soc 136:14834–14844

    Article  CAS  PubMed  Google Scholar 

  46. Figg TM, Wasa M, Yu JQ, Musaev DG (2013) Understanding the reactivity of Pd(0)/PR3 catalyzed intermolecular C(sp3)-H bond arylation. J Am Chem Soc 135:14206–14214

    Article  CAS  PubMed  Google Scholar 

  47. Varela-Álvarez A, Musaev DG (2013) Can the bis(imino)pyridine Iron, (PDI)FeL1L2, complex catalyze C-H bond functionalization ? Chem Sci 4:3758–3764

    Article  Google Scholar 

  48. Davies HML, Beckwith REJ (2003) Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem Rev 103:2861–2904

    Article  CAS  PubMed  Google Scholar 

  49. Giri R, Shi BF, Engle KM, Maugel N, Yu JQ (2009) Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity. Chem Soc Rev 38:3242–3272

    Article  CAS  PubMed  Google Scholar 

  50. Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Catalytic carbene insertion into C-H bonds. Chem Rev 110:704–724

    Article  CAS  PubMed  Google Scholar 

  51. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem Rev 110:1147–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davies HML, Morton D (2011) Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. Chem Soc Rev 40:1857–1869

    Article  CAS  PubMed  Google Scholar 

  53. Wencel-Delord J, Dröge T, Liu F, Glorius F (2011) Towards mild metal-catalyzed C-H bond activation. Chem Soc Rev 40:4740–4761

    Article  CAS  PubMed  Google Scholar 

  54. Gutekunst WR, Baran PS (2011) C-H functionalization logic in total synthesis. Chem Soc Rev 40:1976–1991

    Article  CAS  PubMed  Google Scholar 

  55. Ackermann L (2011) Carboxylate-assissted transition-metal-catalyzed C-H functionalization: mechanism and scope. Chem Rev 111:1315–1345

    Article  CAS  PubMed  Google Scholar 

  56. Bruckl T, Baxter RD, Ishihara Y, Baran PS (2012) Innate and guided C-H functionalization logic. Acc Chem Res 45:826–839

    Article  CAS  PubMed  Google Scholar 

  57. Hartwig JF, Larsen MA (2016) Undirected, homogeneous C-H Bond functionalization: challenges and opportunities. ACS Cent Sci 2:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW (2016) The medicinal chemist’s toolbox for late-stage functionalization of drug-like molecules. Chem Soc Rev 45:546–576

    Article  CAS  PubMed  Google Scholar 

  59. Engle KM (2016) The mechanism of palladium (II)-mediated C-H cleavage with mono-N-protected amino acid (MPAA) ligands: origins of rate acceleration. Pure Appl Chem 88:119–138

    Article  CAS  Google Scholar 

  60. Hartwig JF (2017) Catalyst-controlled site-selective bond activation. Acc Chem Res 50:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gandeepan P, Muller T, Zell D, Cera G, Warratz S, Ackermann L (2019) 3d Transition metals for C-H activation. Chem Rev 119:2192–2452

    Article  CAS  PubMed  Google Scholar 

  62. Davies HML, Liao KB (2019) Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization. Nat Rev Chem 3:347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morton CM, Zhu QL, Ripberger H, Troian-Gautier L, Toa ZSD, Knowles RR, Alexanian EJ (2019) C-H alkylation via multisite-proton-coupled electron transfer of an aliphatic C-H bond. J Am Chem Soc 141:13253–13260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamaguchi J, Yamaguchi AD, Itami K (2012) C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew Chem Int Ed 51:8960–9009

    Article  CAS  Google Scholar 

  65. Wang B, Perea MA, Sarpong R (2020) Transition metal-mediated C−C single bond cleavage: making the cut in total synthesis. Angew Chem Int Ed 59:18898–18919

    Article  CAS  Google Scholar 

  66. Murakami M, Ishida N (2016) Potential of metal-catalyzed C−C single bond cleavage for organic synthesis. J Am Chem Soc 138:13759–13769

    Article  CAS  PubMed  Google Scholar 

  67. Tsui E, Wang H, Knowles RR (2020) Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem Sci 11:11124–11141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo JJ, Hu A, Zuo Z (2018) Photocatalytic alkoxy radical- mediated transformations. Tetrahedron Lett 59:2103–2111

    Article  CAS  Google Scholar 

  69. Xia Y, Dong G (2020) Temporary or removable directing groups enable activation of unstrained C-C bonds. Nature Rev Chem 4:600–614

    Article  CAS  Google Scholar 

  70. Chen F, Wang T, Jiao N (2014) Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem Rev 114:8613–8661

    Article  CAS  PubMed  Google Scholar 

  71. Differding E, Lang RW (1988) New fluorination reagents-I. The first enantioselective fluorination reaction. Tetrahedron Lett 29:6087–6090

    Article  CAS  Google Scholar 

  72. Umemoto T, Kawada K, Tomita K (1986) N-fluoropyridinium triflate and its derivatives: useful fluorinating agents. Tetrahedron Lett 27:4465–4468

    Article  CAS  Google Scholar 

  73. Davis FA, Han W (1991) N-fluoro-o-benzenedisulfonimide: a useful new fluorinating reagent. Tetrahedron Lett 32:1631–1634

    Article  CAS  Google Scholar 

  74. Banks RE (1998) SelectfluorTM reagent F-TEDA-BF4 in action: tamed fluorine at your service. J Fluorine Chem 87:1–17

    Article  CAS  Google Scholar 

  75. Stavber S (2011) Recent advances in the application of selectfluorTM F-TEDA-BF4 as a versatile mediator or catalyst in organic synthesis. Molecules 16:6432–6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vincent SP, Burkart MD, Tsai CY, Zhang Z, Wong CH (1999) Electrophilic fluorination−nucleophilic addition reaction mediated by selectfluor: mechanistic studies and new applications. J Org Chem 64:5264–5279

    Article  CAS  PubMed  Google Scholar 

  77. Oliver EW, Evans DH (1999) Electrochemical studies of six N-F electrophilic fluorinating reagents. J Electroanal Chem 474:1–8

    Article  CAS  Google Scholar 

  78. Kawakami T, Murakami K, Itami K (2015) Catalytic C-H imidation of aromatic cores of functional molecules: ligand-accelerated Cu catalysis and application to materials- and biology-oriented aromatics. J Am Chem Soc 137:2460–2463

    Article  CAS  PubMed  Google Scholar 

  79. Haines BE, Kawakami T, Murakami K, Itami K, Musaev DG (2017) key mechanistic details and predictive models for Cu-catalyzed aromatic C-H imidation with N-fluorobenzenesulfonimide. Chem Sci 8:988–1002

    Article  CAS  PubMed  Google Scholar 

  80. Pitts CR, Bloom S, Woltornist R, Auvenshine DJ, Ryzhkov LR, Siegler MA, Lectka T (2014) Direct, catalytic monofluorination of sp3 bonds: a radical-based mechanism with ionic selectivity. J Am Chem Soc 136:9780–9791

    Article  CAS  PubMed  Google Scholar 

  81. Rueda-Becerril M, Sazepin CC, Leung JCT, Okbinoglu T, Kennepohl P, Paquin JF, Sammis GM (2012) Fluorine transfer to alkyl radicals. J Am Chem Soc 134:4026–4029

    Article  CAS  PubMed  Google Scholar 

  82. Michaudel Q, Thevenet D, Baran PS (2012) Intermolecular ritter-type C-H amination of unactivated sp3-carbons. J Am Chem Soc 134:2547–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roque JB, Kuroda Y, Göttemann LT, Sarpong R (2018) Deconstructive diversification of cyclic amines. Nature 564:244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Roque JB, Kuroda Y, Göttemann LT, Sarpong R (2018) Deconstructive fluorination of cyclic amines by carbon-carbon cleavage. Science 361:171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roque JB, Jurczyk KY, J, Xu LP, Ham JS, Göttemann LT, Roberts C, Adpressa D, Saurí J, Joyce LA, Musaev DG, Yeung CS, Sarpong R. (2020) C-C cleavage approach to C–H functionalization of saturated aza-cycles. ACS Catal 10:2929–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Roque JB, Sarpong R, Musaev DG (2021) Key mechanistic features of a silver(I)-mediated deconstructive fluorination of cyclic amines: multi-state reactivity versus single electron transfer. J Am Chem Soc 143:3889–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murakami M, Ishida N (2016) Potential of metal-catalyzed C-C single bond cleavage for organic synthesis. J Am Chem Soc 138:13759–13769

    Article  CAS  PubMed  Google Scholar 

  88. O’Reilly ME, Dutta S, Veige AS (2016) β-Alkyl elimination: fundamental principles and some applications. Chem Rev 116:8105–8145

    Article  PubMed  Google Scholar 

  89. Souillart L, Cramer N (2015) Catalytic C-C bond activations via oxidative addition to transition metals. Chem Rev 115:9410–9464

    Article  CAS  PubMed  Google Scholar 

  90. Yu C, Shoaib MA, Iqbal N, Kim JS, Ha HJ, Cho EJ (2017) Selective ring-opening of N-Alkyl pyrrolidines with chloroformates to 4-chlorobutyl carbamates. J Org Chem 82:6615–6620

    Article  CAS  PubMed  Google Scholar 

  91. Feraldi-Xypolia A, Gomez Pardo D, Cossy J (2015) Ring contraction of 3-hydroxy-3 (trifluoromethyl) piperidines: synthesis of 2-substituted 2-(Trifluoromethyl) pyrrolidines. Chem Eur J 21:12876–12880

    Article  CAS  PubMed  Google Scholar 

  92. Wang F, He Y, Tian M, Zhang X, Fan X (2018) Synthesis of α-formylated N-heterocycles and their 1,1-diacetates from inactivated cyclic amines involving an oxidative ring contraction. Org Lett 20:864–867

    Article  CAS  PubMed  Google Scholar 

  93. Huang FQ, Xie J, Sun JG, Wang YW, Dong X, Qi LW, Zhang B (2016) Regioselective synthesis of carbonyl-containing alkyl chlorides via silver-catalyzed ring-opening chlorination of cycloalkanols. Org Lett 18:684–6877

    Article  CAS  PubMed  Google Scholar 

  94. Zhao H, Fan X, Zhu C (2015) Silver-catalyzed ring-opening strategy for the synthesis of b- and g-florinated ketons. J Am Chem Soc 137:3490–3493

    Article  CAS  PubMed  Google Scholar 

  95. Patel NR, Flowers RA III (2015) Mechanistic study of silver-catalyzed decarboxylative fluorination. J Org Chem 80:5834–5841

    Article  CAS  PubMed  Google Scholar 

  96. Yayla HG, Wang H, Tarantino KT, Orbe HS, Knowles RR (2016) Catalytic ring-opening of cyclic alcohols enabled by PCET activation of strong O-H bonds. J Am Chem Soc 138:10794–10797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yin F, Wang Z, Li Z, Li C (2012) Silver-catalyzed decarboxylative fluorination of aliphatic carboxylic acids in aqueous solution. J Am Chem Soc 134:10401–10404

    Article  CAS  PubMed  Google Scholar 

  98. Huang X, Hooker JM, Groves JT (2015) Targeted fluorination with the fluoride ion by manganese-catalyzed decarboxylation. Angew Chem Int Ed 54:5241–5245

    Article  CAS  Google Scholar 

  99. Brandt JR, Lee E, Boursalian GB, Ritter T (2014) Mechanism of electrophilic fluorination with Pd (IV): fluoride capture and subsequent oxidative fluoride transfer. Chem Sci 5:169–179

    Article  CAS  Google Scholar 

  100. Hua AM, Mai DN, Martinez R, Baxter RD (2017) Radical C-H fluorination using unprotected amino acids as radical precursors. Org Lett 19:2949–2952

    Article  CAS  PubMed  Google Scholar 

  101. Schroder D, Shaik S, Schwarz H (2000) Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res 33:139–145

    Article  CAS  PubMed  Google Scholar 

  102. de Visser SP, Ogliaro F, Harris N, Shaik S (2001) Epoxidation of ethene by cytochrome P450: a quantum chemical study. J Am Chem Soc 123:3037–3047

    Article  PubMed  Google Scholar 

  103. Klinker EJ, Shaik S, Hirao H, Que L Jr (2009) Two-state reactivity model explains unusual kinetic isotope effect patterns in CH bond cleavage by non-heme oxoiron (IV) complexes. Angew Chem Int Ed 48:1291–1297

    Article  CAS  Google Scholar 

  104. Musaev DG, Morokuma K (1993) Ab Initio molecular orbital study of the electronic and geometrical structure of MCH2+ and the reaction mechanism: MCH2+ + H2 → M+ + CH4, (M = Co, Rh and Ir). Isr J Chem 33:307–316

    Article  CAS  Google Scholar 

  105. Musaev DG, Morokuma K (1996) Molecular orbital study of the mechanism of Sc+ with methane. Comparison of the reactivity of early and late first-row transition metal cations and their carbene complexes. J Phys Chem 100:11600–11609

    Article  CAS  Google Scholar 

  106. Musaev DG, Morokuma K (1996) Potential energy surface of transition metal catalyzed chemical reactions. Adv Chem Phys 1:61–128

    Google Scholar 

  107. Musaev DG, Morokuma K, Koga N, Nguyen KA, Gordon MS, Cundari TR (1993) An Ab Initio study of the molecular and electronic structure of CoCH2+ and the reaction mechanism: CoCH2+ + H2. J Phys Chem 97:11435–11444

    Article  CAS  Google Scholar 

  108. Musaev DG, Koga N, Morokuma K (1993) Ab Initio molecular orbital study of the electronic and geometrical structure of RhCH2+ and the reaction mechanism: RhCH2+ + H2 → Rh+ + CH4. J Phys Chem 97:4064–4075

    Article  CAS  Google Scholar 

  109. Yarkony D (1996) Diabolical conical intersections. Rev Modern Phys 68:985–1013

    Article  CAS  Google Scholar 

  110. Based on the DFT calculations alone we cannot confidently eliminate a fluoro-cation coupled electron transfer (FCCET) character of this step.

  111. Frisch MJ, et al. (2019) Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT USA.

  112. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  113. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  114. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  Google Scholar 

  115. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  116. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  117. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  118. Grimme S, Antony J, Ehrlich S, Krieg HA (2010) Consistent and accurate Ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154122

    Article  PubMed  Google Scholar 

  119. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101–154106

    Article  PubMed  Google Scholar 

  120. Becke AD, Johnson ER (2005) Exchange-hole dipole moment and the dispersion interaction. J Chem Phys 122:154104–154109

    Article  PubMed  Google Scholar 

  121. Johnson ER, Becke AD (2006) A post-Hartree-Fock model of intermolecular interactions: inclusion of higher-order corrections. J Chem Phys 124:174104–174112

    Article  PubMed  Google Scholar 

  122. Hamill LA, Snyder JD, Ess DH (2016) MECPro Version 1.0.3: minimum energy crossing program.

  123. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  124. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  125. Pritchard BP, Altarawy D, Didier B, Gibson TD, Windus TL (2019) A new basis set exchange: an open, up-to-date resource for the molecular sciences community. J Chem Inf Model 59:4814–4820

    Article  CAS  PubMed  Google Scholar 

  126. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  127. Previously, [86] we have validated the use of dication (F-TEDA)2+, without the two corresponding BF4-counter anions, as a model for Selectfluor®.

  128. At the [B3LYP-D3(BJ)+PCM]/[cc-pVTZ + Lanl2dz(f) (Cu)] and [wB97XD+PCM]/[cc-pVTZ + Lanl2dz(f) (Cu)] levels of theory the calculated: (a) exothermicity of the reaction (1) is 9.8/11.0 and 5.0/6.3 kcal/mol, (b) complexation energy of intermediate Cu(I)[F-TEDA]2+ is -6.8/3.4 and −6.5/3.3 kcal/mol, and (c) Cu(II)F dimerization energy is 43.0/29.7 and 41.0/27.7 kcal/mol, respectively.

  129. At the [B3LYP-D3(BJ)+PCM]/[cc-pVTZ + Lanl2dz(f)(Cu)] and [wB97XD+PCM]/[cc-pVTZ + Lanl2dz(f)(Cu)] levels of theory the calculated: (a) energy of the reaction LH + Cu(I) → [(LH)–Cu(I)] is 35.9/26.1 and 33.3/22.7 kcal/mol, (b) exothermicity of the reaction (2) is 10.6/10.3 and 5.6/6.2 kcal/mol, and (c) complexation energy of intermediate [(LH)–Cu(I)][F-TEDA]2+ is −9.8/+4.2 and −9.3/+3.1 kcal/mol, respectively.

  130. See, NIST: Atomic Spectra Database – Ionization Energies Form https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html.

Download references

Acknowledgements

This work was supported by the National Science Foundation under the CCI Center for Selective C–H Functionalization (CHE-1700982). R.S. is grateful to the NIGMS (R35 GM130345A) for support of the experimental work that was the basis for this computational study. The authors gratefully acknowledge the use of the resources of the Cherry Emerson Center for Scientific Computation at Emory University. J.B.R. thanks Bristol-Myers Squibb for a graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamaladdin G. Musaev.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaledin, A.L., Roque, J.B., Sarpong, R. et al. Computational Study of Key Mechanistic Details for a Proposed Copper (I)-Mediated Deconstructive Fluorination of N-Protected Cyclic Amines. Top Catal 65, 418–432 (2022). https://doi.org/10.1007/s11244-021-01443-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01443-y

Keywords

Navigation