Skip to main content
Log in

CO2 Hydrogenation to Methanol over Copper Catalysts: Learning from Syngas Conversion

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Much of the seminal work on the fundamentals of methanol synthesis from syngas over Cu/ZnO/Al2O3 catalysts was carried out by Spencer and co-workers. Their work addressed key questions relating to the reaction mechanism and the nature of the active sites. The findings of these studies, many of which have since been validated and refined using modern computational and experimental techniques, are now informing the selection and design of catalyst systems for CO2 utilisation by hydrogenation to methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from Chinchen and Spencer [35] with permission from Elsevier

Fig. 2

Reprinted from Burch et al. [47] by permission of The Royal Society of Chemistry

Fig. 3

Figure reprinted without any changes from Bowker [55] under terms of Creative Commons Attribution 4.0 International Public License

Fig. 4

Reprinted with permission from Grabow and Mavrikakis [56] copyright 2011 American Chemical Society

Fig. 5

Reprinted from Lunkenbein et al. [50] with permission from John Wiley & Sons

Fig. 6

Figure reprinted without any changes from Prašnìkar et al. [82] under terms of Creative Commons Attribution 4.0 International Public License

Similar content being viewed by others

References

  1. O’Neill S (2020) Global CO2 emissions level off in 2019, with a drop predicted in 2020. Engineering 6:958–959

    Article  PubMed  Google Scholar 

  2. Hiolski E (2019) Climate change: losing ground? Engineering 5:600–602

    Article  CAS  Google Scholar 

  3. United Nations Framework Convention on Climate Change, Paris Agreement, ratified 2016. https://ec.europa.eu/clima/policies/international/negotiations/paris_en

  4. Stancin H, Mikulcic H, Wang X, Duic N (2020) A review on alternative fuels in future energy systems. Renew Sustain Energy Rev 128:109927

    Article  CAS  Google Scholar 

  5. Vakulchuk R, Overland I, Scholten D (2020) Renewable energy and geopolitics: a review. Renew Sustain Energy Rev 122:109547

    Article  Google Scholar 

  6. Bui M et al (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11:1062–1176

    Article  CAS  Google Scholar 

  7. Raza A, Gholami R, Rezaee R, Rasouli V, Rabiei M (2019) Significant aspects of carbon capture and storage—a review. Petroleum 5:335–340

    Article  Google Scholar 

  8. Alper E, Yuksel Orhan O (2017) CO2 utilization: developments in conversion processes. Petroleum 3:109–126

    Article  Google Scholar 

  9. Fernandez-Dacosta C, Stojcheva V, Ramirez A (2018) Closing carbon cycles: evaluating the performance of multi-product CO2 utilisation and storage configurations in a refinery. J CO2 Util 23:128–142

    Article  CAS  Google Scholar 

  10. Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy 161:718–732

    Article  CAS  Google Scholar 

  11. Methanol Institute. The methanol industry. www.methanol.org/the-methanol-industry/. Accessed 23 Nov 2020

  12. Kowalewicz A (1993) Methanol as a fuel for spark ignition engines: a review and analysis. Proc Inst Mech Eng D 207:43–52

    Article  Google Scholar 

  13. Bromberg L, Cheng WK (2010) Methanol as an alternative transportation fuel in the US: options for sustainable and/or energy-secure transportation (final report). US Department of Energy, Alternative Fuels Data Center, pp 1–78

  14. SGS INSPIRE team (2020) Market study—methanol: properties and uses. SGS Germany GmbH, pp 1–27

  15. Andersson K, Salazar CM (2015) Methanol as a marine fuel. Report for methanol Institute, FCBI Energy. pp 1–46

  16. Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev 57:850–866

    Article  CAS  Google Scholar 

  17. Olah GA, Goeppert A, Surya Prakash GK (2009) Methanol and dimethyl ether as fuels and energy carriers. Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim, pp 185–231

    Chapter  Google Scholar 

  18. Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalysed CO2 hydrogenation processes. Chem Rev 117:9804–9838

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li MM-J, Tsang SCE (2018) Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: a mini-review and prospects. Catal Sci Technol 8:3450–3464

    Article  CAS  Google Scholar 

  20. Liu M, Yi Y, Wang L, Guo H, Bogaerts A (2019) Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis. Catalysts 9:275

    Article  Google Scholar 

  21. Ye R-P, Ding J, Gong W, Argyle MD, Zhong Q, Wang Y, Russell CK, Xu Z, Russell AG, Li Q, Fan M, Yao Y-G (2019) CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat Commun 10:5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T (2020) State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 49:1385–1413

    Article  CAS  PubMed  Google Scholar 

  23. Sha F, Han Z, Tang S, Wang J, Li C (2020) Hydrogenation of carbon dioxide to methanol over non-Cu-based heterogeneous catalysts. ChemSusChem 13:6160–6181

    CAS  PubMed  Google Scholar 

  24. Satterfield CN (1991) Chapter 10—synthesis gas and associated processes. Heterogeneous catalysis in industrial practice, 2nd edn. McGraw-Hill, New York, pp 419–470

    Google Scholar 

  25. Bridger GW, Spencer MS (1996) Chapter 9—methanol synthesis. In: Twigg MV (ed) Catalyst handbook, 2nd edn. CRC Press, Boca Raton, pp 441–468

    Google Scholar 

  26. Chinchen GC, Spencer MS, Waugh KC, Whan DA (1987) Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts. J Chem Soc Faraday Trans 1 83:2193–2212

    Article  CAS  Google Scholar 

  27. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants. Appl Catal 30:333–338

    Article  CAS  Google Scholar 

  28. Chinchen GC, Plant C, Spencer MS, Whan DA (1987) Co-adsorption of oxygen and carbon dioxide on copper metal in a copper/zinc oxide/alumina catalyst. Surf Sci 184:L370-374

    Article  CAS  Google Scholar 

  29. Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC (1988) Synthesis of methanol. Part 1: catalysts and kinetics. Appl Catal 36:1–65

    Article  CAS  Google Scholar 

  30. Kung HH (1980) Methanol synthesis. Catal Rev Sci Eng 22:235–259

    Article  CAS  Google Scholar 

  31. Klier K (1982) Methanol synthesis. Adv Catal 31:243–313

    CAS  Google Scholar 

  32. Klier K, Chatikavanij V, Herman RG, Simmons GW (1982) Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide. J Catal 74:343–360

    Article  CAS  Google Scholar 

  33. Chinchen GC, Hay CM, Vandervell HD, Waugh KC (1987) The measurement of copper surface areas by reactive chromatography. J Catal 103:79–86

    Article  CAS  Google Scholar 

  34. Chinchen GC, Waugh KC, Whan DA (1986) The activity and state of the copper surface in methanol synthesis catalysis. Appl Catal 25:101–107

    Article  CAS  Google Scholar 

  35. Chinchen GC, Spencer MS (1991) Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide. Catal Today 10:293–301

    Article  CAS  Google Scholar 

  36. Waller D, Stirling D, Stone FS, Spencer MS (1989) Copper-zinc oxide catalysts: activity in relation to precursor structure and morphology. Faraday Discuss Chem Soc 87:107–120

    Article  CAS  Google Scholar 

  37. Pollard AM, Spencer MS, Thomas RG, Williams PA, Holt J, Jennings JR (1992) Georgeite and azurite as precursors in the preparation of co-precipitated copper/zinc oxide catalysts. Appl Catal A 85:1–11

    Article  CAS  Google Scholar 

  38. Mota N, Guil-Lopez R, Pawelec BG, Fierro JLG, Navarro RM (2018) Highly active Cu/ZnO-Al catalyst for methanol synthesis: effect of aging on its structure and activity. RSC Adv 8:20619–20629

    Article  CAS  Google Scholar 

  39. Baltes C, Vukojević S, Schüth F (2008) Correlations between synthesis, precursor, and catalyst structure and activity of a large set of Cu/ZnO/Al2O3 catalysts for methanol synthesis. J Catal 258:334–344

    Article  CAS  Google Scholar 

  40. Günter MM, Ressler T, Bems B, Büscher C, Genger T, Hinrichsen O, Muhler M, Schlögl R (2001) Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catal Lett 71:37–44

    Article  Google Scholar 

  41. Kurtz M, Wilmer H, Genger T, Hinrichsen O, Muhler M (2003) Deactivation of supported copper catalysts for methanol synthesis. Catal Lett 86:77–80

    Article  CAS  Google Scholar 

  42. Rhodes MD, Bell AT (2005) The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part 1. Steady-state studies. J Catal 223:198–209

    Article  Google Scholar 

  43. Hayward JS, Smith PJ, Kondrat SA, Bowker M, Hutchings GJ (2017) The effects of secondary oxides on copper-based catalysts for green methanol synthesis. ChemCatChem 9:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spencer MS (1999) The role of surface oxygen on copper metal in catalysts for the synthesis of methanol. Catal Lett 60:45–49

    Article  CAS  Google Scholar 

  45. Fujitani T, Saito M, Kanai Y, Kakumoto T, Watanabe T, Nakamura J, Uchijima T (1994) The role of metal oxides in promoting a copper catalyst for methanol synthesis. Catal Lett 25:271–276

    Article  CAS  Google Scholar 

  46. Burch R, Golunski SE, Spencer MS (1990) The role of hydrogen in methanol synthesis over copper catalysts. Catal Lett 5:55–60

    Article  CAS  Google Scholar 

  47. Burch R, Golunski SE, Spencer MS (1990) The role of copper and zinc oxide in methanol synthesis catalysts. J Chem Soc Faraday Trans 86:2683–2691

    Article  Google Scholar 

  48. Nakamura J, Choi Y, Fujitani T (2003) On the issue of active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top Catal 22:277–285

    Article  CAS  Google Scholar 

  49. Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R (2007) Role of lattice strain and defects in copper particles on the activity Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew Chem Int Ed 46:7324–7327

    Article  CAS  Google Scholar 

  50. Lunkenbein T, Girgsdies F, Kandemir T, Thomas N, Behrens M, Schlögl R, Frei E (2016) Bridging the time gap: a copper/zinc oxide/aluminium oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales. Angew Chem Int Ed 55:12708–12712

    Article  CAS  Google Scholar 

  51. Laudenschleger D, Ruland H, Muhler M (2020) Identifying the nature of active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts. Nat Comm 11:3898

    Article  Google Scholar 

  52. van den Berg R, Prieto G, Korpershoek G, van der Wal LI, van Bunningen AJ, Lægsgaard-Jørgensen S, de Jongh PE, de Jong KP (2016) Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat Comm 7:13057

    Article  Google Scholar 

  53. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897

    Article  CAS  PubMed  Google Scholar 

  54. Bowker M, Houghton H, Waugh KC (1981) Mechanism and kinetics of methanol synthesis on zinc oxide. J Chem Soc Faraday Trans 1 77:3023–3036

    Article  CAS  Google Scholar 

  55. Bowker M (2019) Methanol synthesis from CO2 hydrogenation. ChemCatChem 11:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:365–384

    Article  CAS  Google Scholar 

  57. Kandemir T, Friedrich M, Parker SF, Studt F, Lennon D, Schlögl R, Behrens M (2016) Different routes to methanol: inelastic neutron scattering spectroscopy of adsorbates on supported catalysts. Phys Chem Chem Phys 18:17253–17258

    Article  CAS  PubMed  Google Scholar 

  58. Dennison PR, Packer KJ, Spencer MS (1989) 1H and 13C nuclear magnetic resonance investigations of the Cu/Zn/Al oxide methanol synthesis catalyst. J Chem Soc Faraday Trans 1 85:3537–3560

    Article  CAS  Google Scholar 

  59. Spencer MS (1999) The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and water-gas shift reaction. Top Catal 8:259–266

    Article  CAS  Google Scholar 

  60. Baumgarten E, Lentes-Wagner C, Wagner R (1989) Hydrogen spillover through gas phase transport of hydrogen atoms. J Catal 117:533–541

    Article  CAS  Google Scholar 

  61. Spencer MS, Burch R, Golunski SE (1990) Gas-phase transport of hydrogen atoms in methanol synthesis over copper/zinc oxide catalysts? J Chem Soc Faraday Trans 86:3151-3152S

    Article  CAS  Google Scholar 

  62. Spencer MS (1987) α-Brass formation in copper/zinc oxide catalysts: I. Bulk equilibrium concentrations of zinc under methanol synthesis and water-gas shift reaction conditions. Surf Sci 192:323–328

    Article  CAS  Google Scholar 

  63. Spencer MS (1987) α-brass formation in copper/zinc oxide catalysts: II. Diffusion of zinc in copper and α-brass under reaction conditions. Surf Sci 192:329–335

    Article  CAS  Google Scholar 

  64. Spencer MS (1987) α-brass formation in copper/zinc oxide catalysts: III. Surface segregation of zinc in α-brass. Surf Sci 192:336–343

    Article  CAS  Google Scholar 

  65. Nakamura J, Uchijima T, Kanai Y, Fujitani T (1996) The role of ZnO in Cu/ZnO methanol synthesis catalysts. Catal Today 28:223–230

    Article  CAS  Google Scholar 

  66. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355:1296–1299

    Article  CAS  PubMed  Google Scholar 

  67. Zabilskiy M, Sushkevich VL, Newton MA, van Bokhoven JA (2020) Copper–zinc alloy-free synthesis of methanol from carbon dioxide over Cu/ZnO/faujasite. ACS Catal 10:14240–14244

    Article  CAS  Google Scholar 

  68. Le Valant A, Comminges C, Tisseraud C, Canaff C, Pinard L, Pouilloux Y (2015) The Cu–ZnO synergy in methanol synthesis from CO2, part 1: origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ZnO mechanical mixtures. J Catal 324:41–49

    Article  Google Scholar 

  69. Tisseraud C, Comminges C, Belin T, Ahouari H, Soualah A, Pouilloux Y, Le Valant A (2015) The Cu–ZnO synergy in methanol synthesis from CO2, part 2: origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu–ZnO coprecipitate catalysts. J Catal 330:533–544

    Article  CAS  Google Scholar 

  70. Tisseraud C, Comminges C, Pronier S, Pouilloux Y, Le Valant A (2016) The Cu–ZnO synergy in methanol synthesis part 3: impact of the composition of a selective Cu@ZnOx core–shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. J Catal 343:106–114

    Article  CAS  Google Scholar 

  71. Twigg MV, Spencer MS (2001) Deactivation of supported copper metal catalysts for hydrogenation reactions. Appl Catal A 212:161–174

    Article  CAS  Google Scholar 

  72. Behrens M, Furche A, Kasatkin I, Trunschke A, Busser W, Muhler M, Kniep B, Fischer R, Schlögl R (2010) The Potential of microstructural optimization in metal/oxide Catalysts: higher intrinsic activity of copper by partial embedding of copper nanoparticles. ChemCatChem 2:816–818

    Article  CAS  Google Scholar 

  73. Kondrat SA, Smith PJ, Wells PP, Chater PA, Carter JH, Morgan DJ, Fiordaliso EM, Wagner JB, Davies TE, Lu L, Bartley JK, Taylor SH, Spencer MS, Kiely CJ, Kelly GJ, Park CW, Rosseinsky MJ, Hutchings GJ (2016) Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature 531:83–87

    Article  CAS  PubMed  Google Scholar 

  74. Smith PJ, Kondrat SA, Chater PA, Yeo BR, Shaw GM, Lu L, Bartley JK, Taylor SH, Spencer MS, Kiely CJ, Kelly GJ, Park CW, Hutchings GJ (2017) A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chem Sci 8:2436–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kondrat SA, Smith PJ, Carter JH, Hayward JS, Pudge GJ, Shaw G, Spencer MS, Bartley JK, Taylor SH, Hutchings GJ (2017) The effect of sodium species on methanol synthesis and water–gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discuss 197:287–307

    Article  CAS  PubMed  Google Scholar 

  76. Kondrat SA, Smith PJ, Lu L, Bartley JK, Taylor SH, Spencer MS, Kelly GK, Park CW, Kiely CJ, Hutchings GJ (2018) Preparation of a highly active ternary Cu–Zn–Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. Catal Today 317:12–20

    Article  CAS  Google Scholar 

  77. Sun JT, Metcalfe IS, Sahibzada M (1999) Deactivation of Cu/ZnO/Al2O3 methanol synthesis catalyst by sintering. Ind Eng Chem Res 38:3868–3872

    Article  CAS  Google Scholar 

  78. Sahibzada M, Metcalfe IS, Chadwick D (1998) Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversions. J Catal 174:111–118

    Article  CAS  Google Scholar 

  79. Wu J, Saito M, Takeuchi M, Watanabe T (2001) The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Appl Catal A 218:235–240

    Article  CAS  Google Scholar 

  80. Martin O, Pérez-Ramírez J (2013) New and revisited insights into the promotion of methanol synthesis catalysts by CO2. Catal Sci Technol 3:3343–3352

    Article  CAS  Google Scholar 

  81. Fichtl MB, Schlereth D, Jacobsen N, Kasatkin I, Schumann J, Behrens M, Schlögl R, Hinrichsen O (2015) Kinetics of deactivation of Cu/ZnO/Al2O3 methanol synthesis catalysts. Appl Catal A 502:262–270

    Article  CAS  Google Scholar 

  82. Prašnikar A, Pavlišič A, Ruiz-Zepeda F, Kovač J, Likozar B (2019) Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol. Ind Eng Chem Res 58:13021–13029

    Article  Google Scholar 

  83. Guil-López R, Mota N, Llorente J, Millán E, Pawelec B, Fierro JLG, Navarro RM (2019) Methanol synthesis from CO2: a review of the latest developments in heterogeneous catalysis. Materials 12:3902

    Article  PubMed Central  Google Scholar 

  84. Strangeland K, Li H, Yu Z (2020) CO2 hydrogenation to methanol: the structure-activity relationships of different catalyst systems. Energy Ecol Environ 5:272–285

    Article  Google Scholar 

  85. Styring P, Dowson GRM (2021) Oxygenated transport fuels from carbon dioxide—driving towards net zero. Johns Matthey Technol Rev 65:170–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golunski, S., Burch, R. CO2 Hydrogenation to Methanol over Copper Catalysts: Learning from Syngas Conversion. Top Catal 64, 974–983 (2021). https://doi.org/10.1007/s11244-021-01427-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01427-y

Keywords

Navigation