Skip to main content
Log in

Heterogeneous Photocatalytic Degradation of Ibuprofen Over TiO2–Ag Supported on Activated Carbon from Waste Tire Rubber

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In recent years it has been discovered that some common use medicines, such as ibuprofen and other nonsteroidal anti-inflammatory drugs, are found in water sources in concentrations that have the potential to affect aquatic organisms. On the other hand, waste used tires are a massive problem for the environment due to the leaching of toxic compounds to soils and water. Also, the exposition to environmental conditions can make them sources of vectors like mosquitoes. In this work, three activated carbon (AC) catalysts derived from waste tire rubber, titanium dioxide and silver were synthesized using the sol–gel method. Morphological characterizations such as SEM and TEM were performed in which, the agglomeration of titanium particles and silver crystals on the surface of the AC is evident. In the XRD analysis, the presence of elemental silver nanoparticles was detected. In the diffuse reflectance spectroscopy analysis, the decrease in the titanium band gap, as well as activity in the visible spectrum, was observed. The photocatalytic tests were performed at pH 3 and 7 in the presence of UV/Vis radiation. These tests show that there are differences between the catalyst in both, UV and visible regions. Adsorption is a major phenomenon for the removal of ibuprofen, followed by photolytic decomposition. In visible spectra, the catalysts show a good performance for the removal of ibuprofen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Candido JP, Andrade SJ, Fonseca AL et al (2017) Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-8623-3

    Article  Google Scholar 

  2. Carter WC, Brown BR (2013) Ibuprofen: clinical pharmacology, medical uses and adverse effects. Nova Science Publishers, New York

    Google Scholar 

  3. Lambropoulou DA, Nollet LML (2014) Transformation products of emerging contaminants in the environment. Wiley, West Sussex

    Book  Google Scholar 

  4. Janet Gil M, María Soto A, Iván Usma J, Darío Gutiérrez O (2012) Emerging contaminants in waters: effects and possible treatments. Prod + Limpia 7:52–73

    Google Scholar 

  5. Carr DL, Morse AN, Zak JC, Anderson TA (2011) Biological degradation of common pharmaceuticals and personal care products in soils with high water content. Water Air Soil Pollut. https://doi.org/10.1007/s11270-010-0573-z

    Article  Google Scholar 

  6. Bu Q, Shi X, Yu G et al (2016) Assessing the persistence of pharmaceuticals in the aquatic environment: challenges and needs. Emerg Contam. https://doi.org/10.1016/j.emcon.2016.05.003

    Article  Google Scholar 

  7. Carr DL (2010) Biotransformation of pharmaceuticals and personal care products (PPCPs) at an effluent land application site

  8. Araujo L, Troconis M, Espina M, Prieto A (2014) Persistence of ibuprofen, ketoprofen, diclofenac and clofibric acid in natural waters. J Environ Hum. https://doi.org/10.15764/eh.2014.02005

    Article  Google Scholar 

  9. Puszkarewicz A, Kaleta J, Papciak D (2017) Application of powdery activated carbons for removal ibuprofen from water. J Ecol Eng 10:20. https://doi.org/10.12911/22998993/74289

    Article  Google Scholar 

  10. Mestre AS, Pires J, Nogueira JMF, Carvalho AP (2007) Activated carbons for the adsorption of ibuprofen. Carbon. https://doi.org/10.1016/j.carbon.2007.06.005

    Article  Google Scholar 

  11. Lach J, Szymonik A, Ociepa-Kubicka A (2018) Adsorption of selected pharmaceuticals on activated carbons from water. In: E3S web of conferences. pp 1–8

  12. Tran TTH, Kosslick H, Schulz A, Nguyen QL (2017) Photocatalytic performance of crystalline titania polymorphs in the degradation of hazardous pharmaceuticals and dyes. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6254/aa5956

    Article  Google Scholar 

  13. Murcia JJ, Hernández JS, Rojas H et al (2020) Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as photocatalyst for wastewater treatment. Top Catal. https://doi.org/10.1007/s11244-020-01232-z

    Article  Google Scholar 

  14. Talat-Mehrabad J, Khosravi M, Modirshahla N, Behnajady MA (2016) Synthesis, characterization, and photocatalytic activity of co-doped Ag-, Mg-TiO2-P25 by photodeposition and impregnation methods. Desalin Water Treat. https://doi.org/10.1080/19443994.2015.1036780

    Article  Google Scholar 

  15. Singh P, Vishnu MC, Sharma KK et al (2016) Comparative study of dye degradation using TiO2-activated carbon nanocomposites as catalysts in photocatalytic, sonocatalytic, and photosonocatalytic reactor. Desalin Water Treat. https://doi.org/10.1080/19443994.2015.1108871

    Article  Google Scholar 

  16. Habibi MH, Nasr-Esfahani M (2008) Silver doped TiO2 nanostructure composite photocatalyst film synthesized by sol-gel spin and dip coating technique on glass. Int J Photoenergy. https://doi.org/10.1155/2008/628713

    Article  Google Scholar 

  17. Cojocaru B, Neaţu Ş, Pârvulescu VI et al (2009) Synergism of activated carbon and undoped and nitrogen-doped TiO2 in the photocatalytic degradation of the chemical. Warfare agents Soman, VX, and Yperite. Chem Sustain Energy Mater. 10:20. https://doi.org/10.1002/cssc.200800246

    Article  CAS  Google Scholar 

  18. Hammer N, Mathisen K, Rønning M (2013) CO oxidation over Au/TiO2-carbon catalysts: the effect of thermal treatment, stability and TiO2 support structure. Top Catal. https://doi.org/10.1007/s11244-013-0023-4

    Article  Google Scholar 

  19. El SI, Erdei L, Shon HK, Kim JH (2011) Development of visible light sensitive titania photocatalysts by combined nitrogen and silver doping. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2011.02.039

    Article  Google Scholar 

  20. Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G, Kong F, Wang Q, Dai S, Pan JH (2018) Anatase and rutile in evonik aeroxide P25: heterojunctioned or individual nanoparticles? Catal Today. https://doi.org/10.1016/j.cattod.2017.06.010

    Article  Google Scholar 

  21. Mogal SI, Gandhi VG, Mishra M et al (2014) Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties. Ind Eng Chem Res. https://doi.org/10.1021/ie404230q

    Article  Google Scholar 

  22. Li LC, Tseng YH, Lin H (2020) Efficient photodecomposition of NOx on carbon modified Ag/TiO2 nanocomposites. Top Catal. https://doi.org/10.1007/s11244-020-01255-6

    Article  Google Scholar 

  23. Likun G, Wentao G, Shaoliang X et al (2015) Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO2 and silver nanoparticle films on wood substrates. RSC Adv. https://doi.org/10.1039/C5RA06390F

    Article  Google Scholar 

  24. Keane D (2013) Evaluation of the performance of activated carbon and titanium dioxide composites for pharmaceutical adsorption and photocatalysis in water. Dublin City University, Dublin

    Google Scholar 

  25. Hench LL, West JK (1990) The sol–gel process. Chem Rev. https://doi.org/10.1021/cr00099a003

    Article  Google Scholar 

  26. Belgacem A, Belmedani M, Rebiai R, Hadoun H (2013) Characterization, analysis and comparison of activated carbons issued from the cryogenic and ambient grinding of used tyres. Chem Eng Trans. https://doi.org/10.3303/CET1332285

    Article  Google Scholar 

  27. Sofi A (2018) Effect of waste tyre rubber on mechanical and durability properties of concrete: a review. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2017.08.007

    Article  Google Scholar 

  28. Wik A (2007) Toxic components leaching from tire rubber. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-007-9145-3

    Article  PubMed  Google Scholar 

  29. Reisman JI, Lemieux PM (1997) Air emissions from scrap tire combustion. US Environ Prot Agency, Off Res Dev

    Google Scholar 

  30. Dimpe KM, Ngila JC, Nomngongo PN (2017) Application of waste tyre-based activated carbon for the removal of heavy metals in wastewater. Cogent Eng. https://doi.org/10.1080/23311916.2017.1330912

    Article  Google Scholar 

  31. Karmacharya MS, Gupta VK, Jha VK (2016) Preparation of activated carbon from waste tire rubber for the active removal of Cr(VI) and Mn(II) ions from aqueous solution. Trans Indian Ceram Soc. https://doi.org/10.1080/0371750X.2016.1228481

    Article  Google Scholar 

  32. Li L, Liu S, Zhu T (2010) Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. J Environ Sci. https://doi.org/10.1016/S1001-0742(09)60250-3

    Article  Google Scholar 

  33. Papamija M, Sarria V (2010) Photocatalytic degradation of Ibuprofen using titanium dioxide. Rev Ing 31:47–53

    Article  Google Scholar 

  34. Zabaniotou A, Madau P, Oudenne PD et al (2004) Active carbon production from used tire in two-stage procedure: industrial pyrolysis and bench scale activation with H2O-CO2 mixture. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2004.08.002

    Article  Google Scholar 

  35. Loloie Z, Mozaffarian M, Soleimani M, Asassian N (2017) Carbonization and CO2 activation of scrap tires: optimization of specific surface area by the Taguchi method. Korean J Chem Eng. https://doi.org/10.1007/s11814-016-0266-4

    Article  Google Scholar 

  36. Skodras G, Diamantopoulou I, Zabaniotou A, Stavropoulos G, Sakellaropoulos GP (2007) Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Process. Technol. https://doi.org/10.1016/j.fuproc.2007.03.008

    Article  Google Scholar 

  37. Ucar S, Karagoz S, Ozkan AR, Yanik J (2005) Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel. https://doi.org/10.1016/j.fuel.2005.04.002

    Article  Google Scholar 

  38. Martínez Hernández B, Viola DDJ, Solano SB, Polo EP (2016) Desvulcanización del caucho de neumáticos descartados aplicando XILOL asistido por microondas. https://doi.org/10.13140/RG.2.1.4420.5048

  39. Teng H, Serio MA, Whjtowicz MA et al (1995) Reprocessing of used tires into activated carbon and other products. Ind Eng Chem Res 34:3102–3111

    Article  CAS  Google Scholar 

  40. Torikai N, Meguro TN (1979) Pore size distribution of activated carbons made from tires which contain carbon blacks differing in particle size. Nippon Kagaku Kaishi 11:1604–1608

    Article  Google Scholar 

  41. Murillo R, Navarro MV, García T et al (2005) Production and application of activated carbons made from waste tire. Ind Eng Chem Res. https://doi.org/10.1021/ie050506w

    Article  Google Scholar 

  42. Mogal SI, Gandhi VG, Mishra M, Tripathi S, Shripathi T, Joshi PA, Shah DO (2014) Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties. Ind Eng Chem Res. https://doi.org/10.1021/ie404230q

    Article  Google Scholar 

  43. Choina J, Kosslick H, Fischer C et al (2013) Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2012.09.053

    Article  Google Scholar 

  44. Angkaew S, Limsuwan P (2012) Preparation of silver-titanium dioxide core-shell (Ag@TiO2) nanoparticles: effect of Ti-Ag mole ratio. Procedia Eng. https://doi.org/10.1016/j.proeng.2012.01.1322

    Article  Google Scholar 

  45. Oh WC, Zhang FJ, Chen ML et al (2009) Characterization and relative photonic efficiencies of a new Fe-ACF/TiO2 composite photocatalysts designed for organic dye decomposition. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2008.09.019

    Article  Google Scholar 

  46. Rosa SMC, Nossol ABS, Nossol E et al (2017) Non-synergistic UV-A photocatalytic degradation of estrogens by nano-TiO2 supported on activated carbon. J Braz Chem Soc. https://doi.org/10.5935/0103-5053.20160201

    Article  Google Scholar 

  47. Alzamani M, Shokuhfar A, Eghdam E, Mastali S (2013) Influence of catalyst on structural and morphological properties of TiO2 nanostructured films prepared by sol–gel on glass. Prog Nat Sci Mater Int. https://doi.org/10.1016/j.pnsc.2013.01.012

    Article  Google Scholar 

  48. Xing B, Shi C, Zhang C et al (2016) Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J Nanomater. https://doi.org/10.1155/2016/8393648

    Article  Google Scholar 

  49. Araña J, Doña-Rodríguez JM, Tello Rendón E et al (2003) TiO2 activation by using activated carbon as a support: part I. Surface characterisation and decantability study. Appl Catal B Environ. https://doi.org/10.1016/S0926-3373(03)00107-3

    Article  Google Scholar 

  50. Martínez Martínez J, Murillo R, García T (2013) Production of carbon black from pyrolysis of used tires. Boletín del Grupo Español del Carbón 10–14

  51. Velo-Gala I, López-Peñalver JJ, Sánchez-Polo M, Rivera-Utrilla J (2014) Surface modifications of activated carbon by gamma irradiation. Carbon. https://doi.org/10.1016/j.carbon.2013.09.087

    Article  Google Scholar 

  52. Sanzone G, Zimbone M, Cacciato G, Ruffino F, Carles R, Privitera V, Grimaldi MG (2018) Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattice Microst. https://doi.org/10.1016/j.spmi.2018.09.028

    Article  Google Scholar 

  53. Cui L, Wang Y, Niu M, Chen G, Cheng Y (2009) Synthesis and visible light photocatalysis of Fe-doped TiO2 mesoporous layers deposited on hollow glass microbeads. J Solid State Chem. https://doi.org/10.1016/j.jssc.2009.07.045

    Article  Google Scholar 

  54. Peñas-Garzón M, Gómez-Avilés A, Bedia J, Rodriguez JJ, Belver C (2019) Effect of activating agent on the properties of TiO2/activated carbon heterostructures for solar photocatalytic degradation of acetaminophen. Materials. https://doi.org/10.3390/ma12030378

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem. https://doi.org/10.1016/0022-4596(91)90255-G

    Article  Google Scholar 

  56. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal. https://doi.org/10.1006/jcat.2001.3316

    Article  Google Scholar 

  57. Lindqvist N, Tuhkanen T, Kronberg L (2005) Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res. https://doi.org/10.1016/j.watres.2005.04.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Automundial for the rubber supply. The DICE of the Universidad Jorge Tadeo Lozano for the financial support, and Andrea Alvarez and Felipe Mendoza for their assistance in the analytical methods.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. F. Suarez-Escobar or L. R. Conde-Rivera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suarez-Escobar, A.F., Conde-Rivera, L.R., Lopez-Suarez, F.E. et al. Heterogeneous Photocatalytic Degradation of Ibuprofen Over TiO2–Ag Supported on Activated Carbon from Waste Tire Rubber. Top Catal 64, 51–64 (2021). https://doi.org/10.1007/s11244-020-01311-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01311-1

Keywords

Navigation