Skip to main content

Advertisement

Log in

Catalytic Processes for Biomass-Derived Platform Molecules Valorisation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 20 April 2021

This article has been updated

Abstract

Nowadays, biomass is an interesting raw material for chemical industry, and the valorisation of its derivatives becomes in a sustainable alternative against to the depletion of fossil sources necessary for the production of energy, fuels and chemicals. Different organic compounds, such as sugars, polyols, furanics, as well as several acids (i.e. levulinic acid, succinic acid, itaconic acid, 3-hydroxy-propionic acid, among others) can be obtained after a primary treatment of the lignocellulosic-type biomass. These bio-derived molecules can be used as “platform chemicals” for the synthesis of numerous chemical products (i.e. components and additives for fuels, solvents and paintings, new monomers for polymer industry, etc.). In this review, the possibilities of valorisation via novel catalytic processes of some of the most promising biomass(cellulose/hemicellulose)-derived intermediates and platform chemicals for obtaining both conventional and new high added-value chemicals for industry will be assessed, also including cascade-type (or “one-pot”) catalytic processes recently developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Dusselier M, Mascal M, Sels BF (2014) Top Curr Chem 353:1–40

    Article  CAS  PubMed  Google Scholar 

  2. Gallezot P (2012) Chem Soc Rev 41:1538–1558

    Article  CAS  PubMed  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  PubMed  Google Scholar 

  4. Corma Canos A, Iborra S, Velty A (2007) Chem. Rev. 107:2411–2502

    Article  CAS  Google Scholar 

  5. Liao Y, Koelewijn S-F, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T, Navare K, Nicolaï T, Van Aelst K, Maesen M et al (2020) Science 367(6484):1385–1390

    Article  CAS  PubMed  Google Scholar 

  6. Catalán-Martínez D, Domine ME, Serra JM (2018) Fuel 212:353–363

    Article  CAS  Google Scholar 

  7. Bozell JJ, Petersen GR (2010) Green Chem 12:539–554

    Article  CAS  Google Scholar 

  8. Huber GW, Corma A (2007) Angew Chem Int Ed Engl 46:7184–7201

    Article  CAS  PubMed  Google Scholar 

  9. Budge JR, Attig TG, Pedersen SE (1995) Process for the hydrogenation of maleic acid to 1,4-butanediol, US Patent 5473086

  10. Fagan PJ, Korovessi E, Manzer LE, Mehta R, Thomas SM (2003) Preparation of levulinic acid esters and formic acid esters from biomass and olefins, US Patent 085071

  11. Coulson DR, Manzer LE, Herron N (2001) Process for the preparation of alpha-methylene lactones, US Patent 6313318

  12. Manzer LE (2004) Appl Catal A Gen 272:249–256

    Article  CAS  Google Scholar 

  13. Limayem A, Ricke SC (2012) Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  14. Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  15. El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Carbohydr Polym 84:865–871

    Article  CAS  Google Scholar 

  16. Villandier N, Corma A (2011) Chemsuschem 4:508–513

    Article  CAS  PubMed  Google Scholar 

  17. Ventura M, Cecilia JA, Rodríguez-Castellón E, Domine ME (2020) Green Chem 22:1393–1405

    Article  CAS  Google Scholar 

  18. Perrard A, Gallezot P, Joly J-P, Durand R, Baljou C, Coq B, Trens P (2007) Appl Catal A Gen 331:100–104

    Article  CAS  Google Scholar 

  19. Besson PGM (2001) From fine chemicals through heterogeneous catalysis. Wiley, Weinheim

    Google Scholar 

  20. Baudel HM, de Abreu CAM, Zaror CZ (2005) J Chem Technol Biotechnol 80:230

    Article  CAS  Google Scholar 

  21. Antal MJJ, Mok WS, Richards GN (1990) Carbohydr Res 199:91–109

    Article  CAS  PubMed  Google Scholar 

  22. Cottier GDL (1991) Trends Herecyclic Chem 2:233

    CAS  Google Scholar 

  23. Motagamwala AH, Won W, Sener C, Alonso DM, Maravelias CT, Dumesic JA (2018) Sci Adv 4:eaap9722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. “BIORIZON PLATFORM” can be found under https://www.biorizon.eu/research/

  25. Shaw PE, Tatum JH, Berry RE (1967) Carbohydr Res 5:266–273

    Article  CAS  Google Scholar 

  26. Ventura MED, Chávez-Sifontes M (2019) Curr Catal 8:20–40

    Article  CAS  Google Scholar 

  27. Schutyser W, Renders T, Van den Bosch S, Koelewijn S-F, Beckham GT, Sels BF (2018) Chem Soc Rev 47:852–908

    Article  CAS  PubMed  Google Scholar 

  28. Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF (2017) Biochem.Biophys Rep 10:52–61

    PubMed  PubMed Central  Google Scholar 

  29. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Renew Sustain Energy Rev 66:631–653

    Article  CAS  Google Scholar 

  30. D’Angelo SC, Dall’Ara A, Mondelli C, Pérez-Ramírez J, Papadokonstantakis S (2018) ACS Sustain Chem Eng 6:16563–16572

    Article  CAS  Google Scholar 

  31. Lari GM, Pastore G, Haus M, Ding Y, Papadokonstantakis S, Mondelli C, Pérez-Ramírez J (2018) Energy Environ Sci 11:1012–1029

    Article  CAS  Google Scholar 

  32. Datta R, Henry M (2006) J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  33. Della Pina C, Falletta E, Rossi M (2011) Green Chem 13:1624–1632

    Article  CAS  Google Scholar 

  34. Jiang X, Meng X, Xian M (2009) Appl Microbiol Biotechnol 82:995

    Article  CAS  PubMed  Google Scholar 

  35. David Y, Oh YH, Baylon MG, Baritugo K, Joo JC (2017) Appl Microbiol 53:411–451

    Google Scholar 

  36. Ji RY, Ding Y, Shi TQ, Lin L, Huang H, Gao Z, Ji XJ (2018) Front Microbiol 9:1–7

    Article  Google Scholar 

  37. Brossmer C, Arntz D (2000) Process for the production of 1,3-propanediol, US Patent 6140543, to E. I. du Pont de Nemours and Company

  38. Lam KT, Powell JP, Wieder PR (1997) Process for preparing 1,3-propanediol, WO Patent 9716250

  39. Meng X, Abraham TW, Tsobanakis P (2006) Process for preparation of 1,3-propanediol, US Patent 7126034, to Cargill Incorporated

  40. Mine Gungormusler-Yilmaz NA, Cicek N, Levin DB (2016) Crit. Rev. Biotechnol. 36:482–494

    PubMed  Google Scholar 

  41. Serrano DP, Melero JA, Morales G, Iglesias J, Pizarro P (2018) Catal Rev Eng 60:1–70

    Article  CAS  Google Scholar 

  42. Tang T, Qi F, Liu H, Liu D (2013) Biofuels 4:651–667

    Article  CAS  Google Scholar 

  43. Vidra A, Németh A (2018) Period Polytech Chem Eng 62:156–166

    Article  CAS  Google Scholar 

  44. Celińska E (2015) Biotechnol J 10:242–243

    Article  PubMed  CAS  Google Scholar 

  45. Kim C, Lee JH, Baek J, Kong DS, Na JG, Lee J, Sundstrom E, Park S, Kim JR (2020) Chemsuschem 17:1–11

    Google Scholar 

  46. Karp E, Beckham G, Vardon D, Eaton T (2018),Systems and Methods for Producing Nitriles, US Patent 2018346411, to Alliance for Sustainable Energy, LLC

  47. Li Chao TT, Zhu Q, Cui Z, Wang B, Fang Y (2018) Chem. Eng. Sci. 183:288–294

    Article  CAS  Google Scholar 

  48. Bomgardner MM (2020) Cargill gives biobased acrylic acid one more go, Chemical & Engineering News 98. Available at https://cen.acs.org/business/biobased-chemicals/Cargill-gives-biobased-acrylic-acid/98/i20 (accessed 5 June 2020)

  49. Haas T, Meier M, Brossmer C, Arntz D (1998) Malonic Acid or Salt Preparation, DE Patent 19629372, to Evonik Operations GmbH

  50. Zhang D, Hillmyer MA, Tolman WB (2004) Macromolecules 37:8198

    Article  CAS  Google Scholar 

  51. Andreeßen B, Taylor N, Steinbüchela A (2014) Appl Environ Microbiol 80:6574–6582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pinazo JM, Domine ME, Parvulescu V, Petru F (2015) Catal Today 239:17–24

    Article  CAS  Google Scholar 

  53. Cukalovic A, Stevens CV (2008) Biofuels. Bioprod Bioref 2:505

    Article  CAS  Google Scholar 

  54. Delhomme C, Weuster-Botz D, Kühn FE (2009) Green Chem 11:13

    Article  CAS  Google Scholar 

  55. Sajo Mienda B, Mohd Salleh F (2017) AIMS Bioeng 4:418–430

    Article  CAS  Google Scholar 

  56. Agarwal L, Isar J, Meghwanshi GK, Saxena RK (2006) J Appl Microbiol 100:1348–1354

    Article  CAS  PubMed  Google Scholar 

  57. Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Bioresour Technol 99:1736

    Article  CAS  PubMed  Google Scholar 

  58. Bradfield MFA, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W (2015) Biotechnol Biofuels 8:181. https://doi.org/10.1186/s13068-015-0363-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee PC, Lee SY, Chang H (2010) Biosyst Eng 33:465

    Article  CAS  Google Scholar 

  60. Mazière A, Prinsen P, Garcia A, Luque R, Len C (2017) Bioprod Biorefining 11:908–931

    Article  CAS  Google Scholar 

  61. Grotkjær T (2015) Fundam Bioeng 5:499–546

    Article  Google Scholar 

  62. Datta R, Glassner DA, Jain MK, Roy JV (1992) Method for producing pyrrolidones from succinates from fermentation broths, US Patent 5168055, to BASF SE

  63. Glassner DA, Datta R (1992) Process for the Production and Purification of Succinic Acid, US Patent 5143834

  64. Huh YS, Jun Y-S, Hong YK, Song H, Lee SY, Hong WH (2006) Process Biochem 41:1461

    Article  CAS  Google Scholar 

  65. Bechthold I, Bretz K, Kabasci S, Kopitzky R (2008) Chem Eng Technol 31:647

    Article  CAS  Google Scholar 

  66. Ferone M, Raganati F, Olivieri G, Marzocchella A (2019) Crit Rev Biotechnol 39:571–586

    Article  CAS  PubMed  Google Scholar 

  67. Pillai UR, Sahle-Demessie E, Young D (2003) Appl Catal B 43:131

    Article  CAS  Google Scholar 

  68. Lancia R, Vaccari A, Fumagalli C, Armbruster E (1997) Process for the production of gamma-butyrolactone, US Patent 5698713 to Lonza SPA

  69. Zajacek JG, Shum WP (2000) Butanediol Production, US Patent 6127584, to Arco Chemical Technology, L.P.

  70. Tanabe Y, Toriya J, Sato M, ShiragaK (1977) Process for preparing butanediol and/or butenediol, US Patent 4062900, to Mitsubishi Chemical Industries

  71. Turner K, Sharif M, Rathmell C, Kippax JW, Carter AB, Scarlett J, Reason AJ, Harris N (1988),Process for the production of butane-1,4-diol, US Patent 4751334

  72. De Thomas W, Taylor PD, Tomfohrde F (1992) Process for the production of gamma butyrolactone THF in predetermined amounts, US Patent 5149836, to ISP Investments Inc.

  73. Budge JR, Attig TG, Pedersen SE (1995) Process for the hydrogenation of maleic acid to 1,4-butanediol, US Patent 5473086, to The Standard Oil Co.

  74. Miya B (1973) A process for the production of tetrahydrofuran, DE Patent 2332906, to Kao Corp.

  75. Chen LF, Guo P-J, Zhu L-J, Qiao M-H, Shen W, Xu H-L, Fan K-N (2009) Appl Catal A 356:129

    Article  CAS  Google Scholar 

  76. Wegman RW, Bryant DR (1993) Hydrogenation with Cu-Al catalysts, US Patent 5191091, to Union Carbide Chemicals & Plastics Technology Corporation

  77. Hara Y, Kusaka H, Inagaki H, Takahashi K, Wada K (2000) J Catal 194:188

    Article  CAS  Google Scholar 

  78. Zhang Q, Wu Z, Xu L (1998) Ind Eng Chem Res 37:3525

    Article  CAS  Google Scholar 

  79. Castiglioni GL, Gazzano M, Stefani G, Vaccari A (1993) Stud Surf Sci Catal 78:275

    Article  CAS  Google Scholar 

  80. Suzuki S, Ichiki T, Ueno H (1994) Process for producing 1,4-butanediol and tetrahydrofuran, US Patent 5326889, to Tonen Corporation

  81. Araya S, Hirano S, Hirano T, Takigawa S, Yamamoto T (1989) Production of gamma-butyrolactone, JP Patent 01143865

  82. Broecker FJ, Schwarzmann M (1977) Manufacture of butanediol and/or tetrahydrofuran from maleic acid and/or succinic anhydride via γ-butyrolactone, US Patent 4048196, to BASF Aktiengesellschaft

  83. Jeong H, Kim TH, Kim KI (2006) Fuel Process Technol 87:497

    Article  CAS  Google Scholar 

  84. Hong UG, Hwang S, Seo JG, Yi J (2010) Catal Lett 138:28

    Article  CAS  Google Scholar 

  85. Takeda Y, Tamura M, Nakagawa Y, Okumura K, Tomishige K (2016) Catal. Sci Technol 6:5668–5683

    CAS  Google Scholar 

  86. Huang J, Dai W-L, Li H, Fan K (2007) J Catal 252:69

    Article  CAS  Google Scholar 

  87. Huang J, Dai W-L, Fan J (2009) J Catal 266:228

    Article  CAS  Google Scholar 

  88. Budroni G, Corma A (2008) J Catal 257:403

    Article  CAS  Google Scholar 

  89. Mabry MA, Prichard WW, Ziemecki SB (1985) Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst, US Patent 4550185, to E.I. Du Pont de Nemours and Compan.

  90. Ly BK, Tapin B, Epron F, Pinel C, Especel C, Besson M (2019) Catal Today 0–1

  91. Di X, Li C, Zhang B, Qi J, Li W, Su D, Liang C (2017) Ind Eng Chem Res 56:4672–4683

    Article  CAS  Google Scholar 

  92. Tooley PA, Black JR (1999) Ru, Sn/oxide catalyst and process for hydrogenation in acidic aqueous solution, US Patent 5985789

  93. Bhattscharyya A, Maynard A (2006), US Patent 004212.

  94. M. Matson (1990) Preparation of 2-pyrrolidone, US Patent 4904804, to Phillips Petroleum Co.

  95. Hollstein EB (1974), Preparation of 2-pyrrolidone, US Patent 3812149, to Sun Research Development

  96. White JF, Holladay JE, Zacher AA, Frye JG, Werpy TA (2014) Top Catal 57:1325–1334

    Article  CAS  Google Scholar 

  97. Fischer W, Klein D, Künkel A, Pinkos R, Scholten E (2011) Method for producing pyrrolidones from succinates from fermentation broths, US Patent 8017790 B2

  98. Oh IC, Kim CG, Lee DY, Kim IH, Kim JS, Kim SH, Hwang CG, Noh M, Hun J, Jung JS (2009) KR Patent 010864

  99. Luque R, Lin CSK, Du C, Macquarrie DJ, Koutinas A, Wang R, Webb C (2009) Green Chem 11:193

    Article  CAS  Google Scholar 

  100. “Ecoflex,” can be found under https://plastics-rubber.basf.com/global/en/performance_polymers/products/ecoflex.html

  101. Landim LB, Miranda EO, de Araújo NA, Pinto JC, Cabral-Albuquerque ECM, Cunha S, Fialho RL (2019) J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117742

    Article  Google Scholar 

  102. Zabihi F, Koeppe H, Achazi K, Hedtrich S, Haag R (2019) Biomacromol 20:1867–1875

    Article  CAS  Google Scholar 

  103. Hu H, Zhang R, Jiang Y, Shi L, Wang J, Bin Ying W, Zhu J (2019) ACS Sustain Chem Eng 7:4255–4265

    Article  CAS  Google Scholar 

  104. Delaunay S, Lapujade P, Engasser JM, Goergen JL (2002) J Ind Microbiol Biotechnol 28:333

    Article  CAS  PubMed  Google Scholar 

  105. Nampoothiri KM, Pandey A (1998) Bioresour Technol 63:101

    Article  Google Scholar 

  106. Jyothi AN, Sasikiran K, Nambisan B, Balagopalan C (2005) Process Biochem 40:3576

    Article  CAS  Google Scholar 

  107. Suresh S, Khan NS, Srivastava VC (2009) J Chem Reac Eng 7:A89

    Google Scholar 

  108. Hirasawa T, Shimizu H (2016) Ind Biotechnol Prod Process 339–360

  109. Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Innasimuthu GM, Rajoo B, Alanzi KF, Rajaram SK (2019) J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2019.11.034

    Article  Google Scholar 

  110. Kumar R, Vikramachakravarthi D, Pal P (2014) Chem Eng Process Process Intensif 81:59–71

    Article  CAS  Google Scholar 

  111. Werpy T, Bozell J, Petersen G, Aden A, Holladay J, White J, Manheim A, Elliot D, Lasure L, Jones S, et al (20040 Results of screening for potential candidates from sugars and synthesis gas

  112. Holladay JE, Werpy TA, Muzatko DS (2004) Appl Biochem Biotechnol 113–116:857

    Article  PubMed  Google Scholar 

  113. Izumi Y, Akabori S, Fukawa H, Tatsumi S, Imaida M, Fukuda T (1965) Proc Intern Congr Catal 1965(2):1364

    Google Scholar 

  114. Izumi Y, Imaida M, Fukawa H, Akabori S (1963) Bull Chem Soc Jap 1:21

    Article  Google Scholar 

  115. Adkins H, Billica HR (1948) J Am Chem Soc 70:3121–3125

    Article  CAS  Google Scholar 

  116. Antons S (1998) Process for the preparation of optically active alcohols, US Patent 5731479, to Bayer Aktiengesellschaf

  117. Antons S, Beitzke B (1996) Process for preparing optically active amino alcohols, US Patent 5536879, to Bayer Aktiengesellschaft

  118. Bhandare SG, Vaidya PD (2017) Ind Eng Chem Res 56:3797–3803

    Article  CAS  Google Scholar 

  119. Zhang W, Rao MY, Cheng ZJ, Zhu XY, Gao K, Yang J, Yang B, Liao XL (2015) Chem Pap 69:716–721

    CAS  Google Scholar 

  120. Le Nôtre J, Scott EL, Franssen MCR, Sanders JPM (2011) Green Chem 13:807–809

    Article  CAS  Google Scholar 

  121. Beerthuis R, Rothenberg G, Shiju NR (2015) Green Chem 17:1341–1361

    Article  CAS  Google Scholar 

  122. Xu X, But A, Wever R, Hollmann F (2019) ChemCatChem 1:1–5

    Google Scholar 

  123. De Schouwer F, Claes L, Claes N, Bals S, Degrève J, De Vos DE (2015) Green Chem 17:2263–2270

    Article  CAS  Google Scholar 

  124. Suganuma S, Otani A, Joka S, Asako H, Takagi R, Tsuji E, Katada N (2019) Chemsuschem 12:1381–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Trant AG, Baddeley CJ (2011) J Phys Chem C 115:1025–1030

    Article  CAS  Google Scholar 

  126. Yue YN, Meng WJ, Liu L, Hu QL, Wang H, Lu JX (2018) Electrochim Acta 260:606–613

    Article  CAS  Google Scholar 

  127. Shih I-L, Van Y-T (2001) Biores Technol 79:207

    Article  CAS  Google Scholar 

  128. Richard A, Margaritis A (2001) Crit Rev Biotechnol 21:219

    Article  CAS  PubMed  Google Scholar 

  129. Ajayeoba TA, Dula S, Ijabadeniyi OA (2019) Front Microbiol. https://doi.org/10.3389/fmicb.2019.00771

    Article  PubMed  PubMed Central  Google Scholar 

  130. Müslüm Altun (2019) Trak Univ J Nat Sci 20:27–34

  131. Cao M, Feng J, Sirisansaneeyakul S, Song C, Chisti Y (2018) Biotechnol Adv 36:1424–1433

    Article  CAS  PubMed  Google Scholar 

  132. Okabe M, Lies D, Kanamasa S (2009) Appl Microbiol Biotechnol 84:597

    Article  CAS  PubMed  Google Scholar 

  133. Gowda RR, Chen EYX (2019) Chemsuschem 12:973–977

    Article  CAS  PubMed  Google Scholar 

  134. Cunha da Cruz J (2018) Machado de Castro a, Camporese Sérvulo ef, 3 Biotech 8:1–15

  135. Nemestóthy N, Komáromy P, Bakonyi P, Tóth AL, Tóth G, Gubicza L, Bélafi-Bakó K (2019) Waste Biomass Valorization. https://doi.org/10.1007/s12649-019-00729-3

    Article  Google Scholar 

  136. Regestein L, Klement T, Grande P, Kreyenschulte D, Heyman B, Maßmann T, Eggert A, Sengpiel R, Wang Y, Wierckx N et al (2018) Biotechnol Biofuels 11:1–11

    Article  CAS  Google Scholar 

  137. Steiger MG, Wierckx N, Blank LM, Mattanovich D, Sauer M (2016) Ind Biotechnol Prod Process 5:453–472

    Google Scholar 

  138. Yang J, Xu H, Jiang J, Zhang N, Xie J, Wei M (2019) J Zhao 4:135–142

    CAS  Google Scholar 

  139. Yahiro K, Takahama T, Park Y, Okabe M (1995) J Ferm Bioeng 79:506

    Article  CAS  Google Scholar 

  140. Hevekerl A, Kuenz A, Vorlop KD (2014) Appl Microbiol Biotechnol 98:10005–10012

    Article  CAS  PubMed  Google Scholar 

  141. Liu X, Wang X, Liu Q, Xu G, Li X, Mu X (2016) Catal Today 274:88–93

    Article  CAS  Google Scholar 

  142. Park DS, Abdelrahman OA, Vinter KP, Howe PM, Bond JQ, Reineke TM, Zhang K, Dauenhauer PJ, Sustain ACS (2018) Chem Eng 6:9394–9402

    CAS  Google Scholar 

  143. Spanjers CS, Schneiderman DK, Wang JZ, Wang J, Hillmyer MA, Zhang K, Dauenhauer PJ (2016) ChemCatChem 8:3031–3035

    Article  CAS  Google Scholar 

  144. Abdelrahman OA, Park DS, Vinter KP, Spanjers CS, Ren L, Cho HJ, Zhang K, Fan W, Tsapatsis M, Dauenhauer PJ (2017) ACS Catal 7:1428–1431

    Article  CAS  Google Scholar 

  145. Morais ARC, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdał D, Bogel-ŁUkasik R (2015) Catal Today 239:38–43

    Article  CAS  Google Scholar 

  146. Veerabagu U, Jaikumar G, Fushen L (2019) J Polym Environ 27:2756–2768

    Article  CAS  Google Scholar 

  147. Huang Q, Yu W, Lu F, Lu R, Si X, Gao J, Xu J (2019) Catal Today 319:197–205

    Article  CAS  Google Scholar 

  148. Louven Y, Schute K, Palkovits R (2019) ChemCatChem 11:439–442

    Article  CAS  Google Scholar 

  149. Haus MO, Louven Y, Palkovits R (2019) Green Chem 21:6268–6276

    Article  CAS  Google Scholar 

  150. Chedid R, Melder J, Dostalek R, Pastre J, Tan A (2014) Process for preparing pyrrolidine, US Patent 0018547 A1, to BASF SE

  151. Hass H, Jasne S, Moreau R (1984) Itaconamide Compounds and Methods of Preparation, US Patent 4480125, to Polaroid Corporation

  152. Bohre A, Hočevar B, Grilc M, Likozar B (2019) Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2019.117889

    Article  Google Scholar 

  153. Pirmoradi M, Kastner JR, Sustain ACS (2017) Chem Eng 5:1517–1527

    CAS  Google Scholar 

  154. Di X, Zhang Y, Fu J, Yu Q, Wang Z, Yuan Z, Sustain ACS (2020) Chem Eng 8:1805–1812

    CAS  Google Scholar 

  155. Pérocheau Arnaud S, Andreou E, Pereira Köster LVG, Robert T, Sustain ACS (2019) Chem Eng 8(3):1583–1590

    Google Scholar 

  156. Wang XC, Song YJ, Huang L, Wang H, Huang CP, Li CQ (2019) Catal. Sci Technol 9:1669–1679

    CAS  Google Scholar 

  157. Xu J, Cao F, Li T, Zhang S, Gao C, Wu Y (2016) J Surf Deterg 19:373–379

    Article  CAS  Google Scholar 

  158. Sakthivel M, Franklin DS, Sudarsan S, Chitra G, Sridharan TB, Guhanathan S, Appl SN (2019) Sci 1:146. https://doi.org/10.1007/s42452-018-0156-y

    Article  CAS  Google Scholar 

  159. Teleky BE, Vodnar DC (2019) Polymers (Basel) 11(6):1035. https://doi.org/10.3390/polym11061035

    Article  CAS  Google Scholar 

  160. Trotta JT, Watts A, Wong AR, Lapointe AM, Hillmyer MA, Fors BP, Sustain ACS (2019) Chem Eng 7:2691–2701

    CAS  Google Scholar 

  161. Giacobazzi G, Gioia C, Colonna M, Celli A, Sustain ACS (2019) Chem Eng 7:5553–5559

    CAS  Google Scholar 

  162. Szöllosi G, Balazsik K, Bartok M (2007) Appl Catal A 319:193

    Article  CAS  Google Scholar 

  163. Sahoo S, Kumar P, Lefebvre F, Halligudi SB (2008) J. Catal. 91:5

    Google Scholar 

  164. Guo R, Wang Y, Shan X, Han Y, Cao Z, Zheng H (2019) Carbon N Y 152:671–679

    Article  CAS  Google Scholar 

  165. Quadri SAI, Das TC, Malik MS, Seddigi ZS, Farooqui M (2016) ChemistrySelect 1:4602–4606

    Article  CAS  Google Scholar 

  166. Kasar SB, Thopate SR (2019) Curr Organocatal 6:231–237

    Article  CAS  Google Scholar 

  167. Timokhin BV, Baransky VA, Eliseeva GD (1999) Russ Chem Rev 68:73–84

    Article  CAS  Google Scholar 

  168. Rangarajan S, Bhan A, Daoutidis P (2010) Ind Eng Chem Res 49:10459–10470

    Article  CAS  Google Scholar 

  169. Shilling WL (1996) US Patent 32355562

  170. Fitspatrick SW (1990) Lignocellulose degradation to furfural and levulinic acid, US Patent 4897497, to Biofine Incorporated

  171. Fitzpatrick SW (2002) Final technical report commercialization of the biofine technology for levulinic acid production from paper sludge, BioMetics Inc., Report No DOE/CE/41178, (http://www.Osti.Gov/Bridge), US Department Of Energy: Washington DC

  172. Manzer LE (2004) Biomass derivatives: a sustainable source of chemicals; National Science Foundation Workshop: Catalysis for Renewables Conversion, National Science Foundation: Washington, DC

  173. Schraufnagel RA, Rase HF (1975) Ind Eng Chem Prod Res Dev 14:40

    CAS  Google Scholar 

  174. Elliott DC, Frye JG (1999), US Patent 5883266, to Battelle Memorial Institute

  175. Luque R, Clark JH, Yoshida K (2009) Chem Commun 1:5305

    Article  CAS  Google Scholar 

  176. Luque R, Clark JH (2010) Catal Commun 1:928

    Article  CAS  Google Scholar 

  177. Manzer LE (2002) WO Patent 2002074760.

  178. Manzer LE (2003) US Patent 20030055270.

  179. Dunlop AP, Madden J (1957) US Patent 2786852

  180. Manzer LE, Hutchenson KW (2003) US Patent 2004254384

  181. Kopetzki D, Antonietti M (2010) Green Chem 12:656

    Article  CAS  Google Scholar 

  182. Deng L, Li J, Lai D-M, Fu Y, Guo Q-X (2009) Angew Chem Int Ed 48:6529

    Article  CAS  Google Scholar 

  183. Puts RD, Brandenburg C, Tarburton KR (2002) US Patent 2002143195

  184. Coulson DR, Manzen LE, Herron N (2001) US Patent 6313318

  185. Manzer LE (2004) Appl Catal A 272:249

    Article  CAS  Google Scholar 

  186. Corma A, Iborra S (2007) Chem Rev 107:2411

    Article  CAS  PubMed  Google Scholar 

  187. Lourvanij K, Rorrer GL (1994) Appl Catal A 109:147

    Article  CAS  Google Scholar 

  188. Manzer LE (2005) US Patent 0210738 A1, to DuPont

  189. Manzer LE (2005) US Patent 0171374

  190. Rae A, Hodgson W (2003) WO Patent 002696 A1, to AAE Technologies International PLC

  191. Crook LR, Jansen BA, Spencer KE, Watson DH (1996) GB Patent 1036694

  192. Manzer LE, Herkes FE (2004) US Patent 2004192933

  193. Dunlop AP, Smith S (1955) US Patent 6743819

  194. Sonoda N, Tsutsumi S (1963) Bull Chem Soc Jpn 36:1311

    Article  CAS  Google Scholar 

  195. Pileidis FD, Titirici M-M (2016) Chemsuschem 9:562–582

    Article  CAS  PubMed  Google Scholar 

  196. Hayes DJ (2009) Catal. Today 1:145

    Google Scholar 

  197. Mehdi H, Fabos V, Tuba R, Bodor A, Mika LT (2008) Top Catal 48:49130

    Article  CAS  Google Scholar 

  198. Bianchi M, Menchi G, Francalanci F, Piacenti F, Matteoli U, Frediani P (1980) J Organomet Chem 1:188

    Google Scholar 

  199. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J (2010) Angew Chem Int Ed 49:5510

    Article  CAS  Google Scholar 

  200. Serrano-Ruiz JC, West RM, Dumesic JA (2010) Annu Rev Chem Biomol Eng 1:79

    Article  CAS  PubMed  Google Scholar 

  201. Simonetti DA, Dumesic JA (2009) Catal Rev 51:441

    Article  CAS  Google Scholar 

  202. Serrano-Ruiz JC, Wang D (2010) Green Chem 12:574

    Article  CAS  Google Scholar 

  203. Horvath IT, Mehdi H, Fabos V, Boda L (2008) Green Chem 10:238

    Article  CAS  Google Scholar 

  204. West RM, Liu ZL, Peter M (2008) Chemsuschem 1:417

    Article  CAS  PubMed  Google Scholar 

  205. Kottke RH (1998) Kirk-Othmer Encyclopedia of Chemical Technology. In: Kroschwitz J, Howe-Grant M (eds) Organic reaction. Wiley, New York

    Google Scholar 

  206. Delbecq F, Wang Y, Muralidhara A, El Ouardi K, Marlair G, Len C (2018) Front Chem 6:146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Yamaguchi A, Mimura N, Shirai M, Sato O (2019) Acs Sustain Chem Eng 7:10445–10451

    Article  CAS  Google Scholar 

  208. Chheda B (2016) US Patent 025673 A1

  209. Yu SJ, Park N, Park ED, Yoo MJ (2015) J Ind Eng Chem 21:350–355

    Article  CAS  Google Scholar 

  210. Chen H, Qin L, Yu B (2015) Biomass Bioenerg 73:77–83

    Article  CAS  Google Scholar 

  211. Li X, Yang J, Xu R, Lu L, Kong F, Liang M, Jiang L, Nie S, Si C (2019) Ind Crops Prod 135:196–205

    Article  CAS  Google Scholar 

  212. Bernal HG, Galletti AMR, Garbarino G, Busca G, Finocchio E (2015) Appl Catal A Gen 502:388–398

    Article  CAS  Google Scholar 

  213. Doiseau A-C, Rataboul F, Burel L, Essayem N (2014) Catal Today 226:176–184

    Article  CAS  Google Scholar 

  214. Zhang L, Yu H, Wang P (2013) Bioresour Technol 136:515–521

    Article  CAS  PubMed  Google Scholar 

  215. Gómez Millán G, Phiri J, Mäkelä M, Maloney T, Balu AM, Pineda A, Llorca J, Sixta H (2019) Appl Catal A Gen 585:117180

    Article  CAS  Google Scholar 

  216. McEvoy HS, Shalit H (1964) US Patent 3374184

  217. Zheng H-Y, Zhu Y-L, Teng B-T, Bai Z-Q, Zhang C-H, Xiang H-W, Li Y-W (2006) J Mol Catal A Chem 246:18–23

    Article  CAS  Google Scholar 

  218. Rao RS, Baker RTK, Vannice MA (1999) Catal Lett 60:51–57

    Article  CAS  Google Scholar 

  219. Nagaraja BM, Siva Kumar V, Shasikala V, Padmasri AH, Sreedhar B, David Raju B, Rama Rao KS (2003) Catal Commun 4:287–293

    Article  CAS  Google Scholar 

  220. Hao X-Y, Zhou W, Wang J-W, Zhang Y-Q, Liu S (2005) Chem. Lett. 34:1000–1001

    Article  CAS  Google Scholar 

  221. Wu J, Shen Y, Liu C, Wang H, Geng C, Zhang Z (2005) Catal Commun 6:633–637

    Article  CAS  Google Scholar 

  222. Kijeński J, Winiarek P, Paryjczak T, Lewicki A, Mikołajska A (2002) Appl Catal A Gen 233:171–182

    Article  Google Scholar 

  223. Frainier LJ, FinebergH (1980) DE Patent 3007139

  224. Hinnekens H (1984) DE Patent, 3425758

  225. De Thomas WR, Hort EV (1978) US Patent 4153578

  226. Baijun L, Lianhai L, Bingchun W, Tianxi C (1998) Katsuyoshi Iwatani. Appl Catal A Gen 171:117–122

    Article  Google Scholar 

  227. Li H, Luo H, Zhuang L, Dai W, Qiao M (2003) J Mol Catal A Chem 203:267–275

    Article  CAS  Google Scholar 

  228. Chen X, Li H, Luo H, Qiao M (2002) Appl Catal A Gen 233:13–20

    Article  CAS  Google Scholar 

  229. Corma A, Domine ME, Valencia S (2014) WO Patent 20144064318

  230. Mori S, Hamana R, Aoki T, Ayusawa T (1984) JP Patent 61134384

  231. Ayusawa T, Mori S, Aoki T, Hamana R (1984) JP Patent 60146885

  232. Wilson WC (1932) Org Synth

  233. Franckland FWAFP (1936) J Chem Soc 13:265

    Google Scholar 

  234. Isenhour LL (1936) US Patent 2041184

  235. Dunlop AP (1946) US Patent 2407866

  236. Verdeguer P, Merat N, Rigal L, Gaset A (1994) J Chem Technol Biotechnol 61:97–102

    Article  CAS  Google Scholar 

  237. Verdeguer P, Merat N, Gaset A (1994) Appl Catal A Gen 112:1–11

    Article  CAS  Google Scholar 

  238. Lecomte J, Finiels A, Geneste P, Moreau C (1998) Appl Catal A Gen 168:235–241

    Article  CAS  Google Scholar 

  239. Boulet JSO, Emo R, Faugeras P, Jobelin I, Laport F, Lecomte J, Moreau C, Roux MC, Roux G, Simminger J (1995) FR Patent 9513829

  240. Ventura M, Aresta M, Dibenedetto A (2016) Chemsuschem 9:1096–1100

    Article  CAS  PubMed  Google Scholar 

  241. Ventura M, Lobefaro F, de Giglio E, Distaso M, Nocito F, Dibenedetto A (2018) Chemsuschem 11:1305–1315

    Article  CAS  PubMed  Google Scholar 

  242. Cottier L, Descotes G, Lewkowski J (1994) Polish J Chem 1:68

    Google Scholar 

  243. Morikawa S, Teratake S (1977) JP Patent 54009260

  244. Sheldon RA (1991) In: Guisnet M, Barrault J, Bouchoule C, Duprez D, Pérot G, Maurel R, Montassier R (eds), Heterog. Catal. Fine Chem. II Elsevier, New York, pp 33–54

  245. Grushin V, Herron N (2002) Patent, 2003024947

  246. Durand G, Faugeras P, Laporte F, Moreau C, Neau MC, Roux G, Tichit D, Toutremepuich C (1995) WO Patent 9617836

  247. Moreau C, Durand R, Pourcheron C, Tichit D (1997) In: Blaser HU, Baiker A, Prins C (eds), Heterog. Catal. Fine Chem. IV, Elsevier, New York, pp 399–406

  248. Vinke P, de Wit D, De Goede TJW (1992) New Developments In Selective Oxidation By Heterogeneous Catalysis. Elsevier, Amsterdam

    Google Scholar 

  249. Verdeguer P, Merat N, Gaset A (1993) J Mol Catal 85:327–344

    Article  CAS  Google Scholar 

  250. Carlini C, Patrono P, Galletti AMR, Sbrana G, Zima V (2005) Appl Catal A Gen 289:197–204

    Article  CAS  Google Scholar 

  251. Faury A, Gaset A (1981) Inf Chim

  252. Smirnov VA, Kulnevich VG, Soltovets GN, Semchemko DP (1974) US Patent 3847952

  253. Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30

    Article  CAS  Google Scholar 

  254. Ventura M, Nocito F, de Giglio E, Cometa S, Altomare A, Dibenedetto A (2018) Green Chem 20:3921–3926

    Article  CAS  Google Scholar 

  255. Trivedi J, Bhonsle AK, Atray N (2020) In: Kumar RP, Gnansounou E, Raman JK, Baskar B (eds), Academic Press, London, pp 427–448

  256. Si Z, Zhang X, Zuo M, Wang T, Sun Y, Tang X, Zeng X, Lin L (2020) Korean J Chem Eng 37:224–230

    Article  CAS  Google Scholar 

  257. Yuan H, Liu H, Du J, Liu K, Wang T, Liu L (2020) Appl Microbiol Biotechnol 104:527–543

    Article  CAS  PubMed  Google Scholar 

  258. Ventura M, Dibenedetto A, Aresta M (2018) Inorg Chim Acta 470:11–21

    Article  CAS  Google Scholar 

  259. Ribeiro ML, Schuchardt U (2003) Catal Commun 4:83–86

    Article  CAS  Google Scholar 

  260. Bello S, Méndez-Trelles P, Rodil E, Feijoo G, Moreira MT (2020) Sep Purif Technol 233:116056

    Article  CAS  Google Scholar 

  261. Lisuzzo L, Cavallaro G, Milioto S, Lazzara G (2020) Appl Clay Sci 185:105416

    Article  CAS  Google Scholar 

  262. Tharani D, Ananthasubramanian M (2020), In Alam MA, Xu J-L, Wang Z (eds), Springer, Singapore, pp 373–396

  263. Pavlovskay NE, Gorkova IV, Gagarina IN, Gavrilova AY, Conf IOP (2020) Ser Earth Environ Sci 422:12120

    Google Scholar 

  264. Silva SS, Felipe MG, Mancilha IM (1998) Appl Biochem Biotechnol 1:70–72

    Google Scholar 

  265. Delgado Arcaño Y, Valmaña García OD, Mandelli D, Carvalho WA, Magalhães Pontes LA (2020) Catal Today 344:2–14

    Article  CAS  Google Scholar 

  266. Zhang X, Wilson K, Lee AF (2016) Chem Rev 116:12328–12368

    Article  CAS  PubMed  Google Scholar 

  267. VenkateswarRao L, Goli JK, Gentela J, Koti S (2016) Bioresour Technol 213:299–310

    Article  CAS  Google Scholar 

  268. Sato O, Mimura N, Masuda Y, Shirai M, Yamaguchi A (2019) J Supercrit Fluids 144:14–18

    Article  CAS  Google Scholar 

  269. Hilpmann G, Steudler S, Ayubi MM, Pospiech A, Walther T, Bley T, Lange R (2019) Catal Lett 149:69–76

    Article  CAS  Google Scholar 

  270. Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2008) Biotechnol Biofuels 1:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Verduyn C, Jzn JF, van Dijken JP, Scheffers WA, Microbiol FEMS (1985) Lett 30:313–317

    CAS  Google Scholar 

  272. Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Lee S-M (2020) Biotechnol Biofuels 13:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Yin B, Jin X, Zhang G, Yan H, Zhang W, Liu X, Liu M, Yang C, Shen J, Sustain ACS (2020) Chem Eng 8:5305–5316

    CAS  Google Scholar 

  274. Murzin DY, Garcia S, Russo V, Kilpiö T, Godina LI, Tokarev AV, Kirilin AV, Simakova IL, Poulston S, Sladkovskiy DA et al (2017) Ind Eng Chem Res 56:13240–13253

    Article  CAS  Google Scholar 

  275. Wang S-F, Fan M-H, He Y-T, Li Q-X (2019) Chinese J Chem Phys 32:513–520

    Article  CAS  Google Scholar 

  276. Moreno J, Iglesias J, Blanco J, Montero M, Morales G, Melero JA (2020) J Clean Prod 250:119568

    Article  CAS  Google Scholar 

  277. Zhang G, Chen T, Zhang Y, Liu T, Wang G (2020) Catal Lett. https://doi.org/10.1007/s10562-020-03129-8

    Article  Google Scholar 

  278. Guleria A, Kumari G, Saravanamurugan S (2020) In: Saravanamurugan S, Pandey A, Li H, Riisager ABTR (eds), Biomass, Biofuels, Biochemicals, Elsevier, New York, pp 433–457

  279. Yuan D, Li L, Li F, Wang Y, Wang F, Zhao N, Xiao F (2019) Chemsuschem 12:4986–4995

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MED acknowledges financial support by the Spanish Government (PGC2018-097277-B-I00 and SEV-2016-0683) and Generalitat Valenciana (GVA, PROMETEO/2018/006). AMA is thankful to MINECO financial support (ENE2016-81013-R (AEI/FEDER, UE) and Andalusian Government (UCO-FEDER Project CATOLIVAL, re. 1264113-R, 2018 call). MV thanks the EU H2020 for the Marie Skłodowska-Curie (GA 754382), GOT ENERGY TALENT. The content of this article does not reflect the official opinion of the European Union. Responsibility for the information and views expressed herein lies entirely with the author(s).

Funding

This study was funded by MINECO (SEV-2016-0683 and ENE2016-81013-R), MICINN (PGC2018-097277-B-I00), and Marie Skłodowska-Curie (GA 754382), EU H2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo E. Domine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, M., Marinas, A. & Domine, M.E. Catalytic Processes for Biomass-Derived Platform Molecules Valorisation. Top Catal 63, 846–865 (2020). https://doi.org/10.1007/s11244-020-01309-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01309-9

Keywords

Navigation