Skip to main content
Log in

Effective Conversion of Cellulose to Sorbitol Catalyzed by Mesoporous Carbon Supported Ruthenium Combined with Zirconium Phosphate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The selective conversion of cellulose to sorbitol is a promising route to valorize biomass. A binary catalyst ZrP-Ru/MC was constructed by mesoporous carbon supported ruthenium (Ru/MC) combined with zirconium phosphate (ZrP). It was found that ZrP-Ru/MC was an excellent catalyst for the conversion of cellulose with high sorbitol yield. Under the optimal reaction condition, a high sorbitol yield of 66.4% was obtained in just 1.5 h if cellulose was mix-milled together with ZrP. The characterizations results indicated that the high dispersion of Ru and macroporous–mesoporous structure were the key factor to determine the excellent catalytic activity of Ru/MC. In addition, the Ru TOF of 220 h−1 in the Ru/MC was much higher than that of commercial ruthenium carbon, indicating the high Ru utilization in Ru/MC.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng M, Pang J, Wang A, Zhang T (2014) Chin J Catal 35:602–613

    CAS  Google Scholar 

  2. Song J, Fan H, Ma J, Han B (2013) Green Chem 15:2619–2635

    CAS  Google Scholar 

  3. Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Chemcatchem 3:82–94

    Google Scholar 

  4. Wang S, Wei W, Zhao Y, Li H, Li H (2015) Catal Today 258:327–336

    CAS  Google Scholar 

  5. Kusserow B, Schimpf S, Claus PJAS (2010) Adv Synth Catal 345:289–299

    Google Scholar 

  6. M. Dolores Adsuar-Garcia, J. Xavier Flores-Lasluisa, F. Zahra Azar, M. Carmen Roman-Martinez, Catalysts 8 (2018).

  7. Han JW, Lee H (2012) Catal Commun 19:115–118

    CAS  Google Scholar 

  8. Ding L-N, Wang A-Q, Zheng M-Y, Zhang T (2010) Chemsuschem 3:818–821

    CAS  PubMed  Google Scholar 

  9. Liu M, Deng W, Zhang Q, Wang Y, Wang Y (2011) Chem Commun 47:9717–9719

    CAS  Google Scholar 

  10. Zhu W, Yang H, Chen J, Chen C, Guo L, Gan H, Zhao X, Hou Z (2014) Green Chem 16:1534–1542

    CAS  Google Scholar 

  11. Ribeiro LS, Delgado JJ, Orfao JJM, Pereira MFR (2017) Appl Catal B 217:265–274

    CAS  Google Scholar 

  12. Li Z, Liu Y, Liu C, Wu S, Wei W (2019) Bioresour Technol 274:190–197

    CAS  PubMed  Google Scholar 

  13. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A (2010) Green Chem 12:972–978

    CAS  Google Scholar 

  14. Zhang J, Wu SB, Liu Y (2014) Energ Fuels 28:4242–4246

    CAS  Google Scholar 

  15. Palkovits R, Tajvidi K, Ruppert AM, Procelewska J (2011) Chem Commun 47:576–578

    CAS  Google Scholar 

  16. Op de Beeck B, Geboers J, Van de Vyver S, Van Lishout J, Snelders J, Huijgen WJJ, Courtin CM, Jacobs PA, Sels BF (2013) Chemsuschem 6:199–208

    CAS  PubMed  Google Scholar 

  17. Pang J, Wang A, Zheng M, Zhang T (2010) Chem Commun 46:6935–6937

    CAS  Google Scholar 

  18. Gao K, Xin J, Yan D, Dong H, Zhou Q, Lu X, Zhang S (2018) J Chem Technol Biotechnol 93:2617–2624

    CAS  Google Scholar 

  19. Rusu OA, Hoelderich WF, Wyart H, Ibert M (2015) Appl Catal B 176:139–149

    Google Scholar 

  20. Li D, Ni W, Hou Z (2017) Chinese. J Catal 38:1784–1793

    CAS  Google Scholar 

  21. Pang J, Wang A, Zheng M, Zhang Y, Huang Y, Chen X, Zhang T (2012) Green Chem 14:614–617

    CAS  Google Scholar 

  22. Liao Y, Liu Q, Wang T, Long J, Ma L, Zhang Q (2014) Green Chem 16:3305–3312

    CAS  Google Scholar 

  23. Zhang Y, Wang A, Zhang T (2010) Chem Commun 46:862–864

    CAS  Google Scholar 

  24. Li F, France LJ, Cai Z, Li Y, Liu S, Lou H, Long J, Li X (2017) Appl Catal B 214:67–77

    CAS  Google Scholar 

  25. Rossetti I, Pernicone N, Forni L (2003) Appl Catal A 248:97–103

    CAS  Google Scholar 

  26. Guerrero-Ruiz A, Badenes P, Rodriguez-Ramos I (1998) Appl Catal A 173:313–321

    CAS  Google Scholar 

  27. Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A (2011) Appl Catal A 407:188–194

    CAS  Google Scholar 

  28. Zhou QQ, Xiang YC, Bo WJM (2012) Microporous Mesoporous Mater 158:155–161

    CAS  Google Scholar 

  29. Di J, Xu H, Gai X, Yang R, Zheng H (2019) Mater Lett 246:129–132

    CAS  Google Scholar 

  30. Zhang B, Chen B, Douthwaite M, Liu Q, Zhang C, Wu Q, Shi R, Wu P, Zhao F, Hutchings G (2018) Green Chem 20:3634–3642

    CAS  Google Scholar 

  31. Gan H, Zhao X, Song B, Guo L, Zhang R, Chen C, Chen J, Zhu W, Hou Z (2014) Gas phase dehydration of glycerol to acrolein catalyzed by zirconium phosphate. Chin J Catal 35:1148–1156

    CAS  Google Scholar 

  32. Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Green Chem 13:326–333

    CAS  Google Scholar 

  33. Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Chem Commun 46:3577–3579

    CAS  Google Scholar 

  34. Xiu Y, Chen A, Liu X, Chen C, Chen J, Guo L, Zhang R, Hou Z (2015) Rsc Adv 5:28233–28241

    CAS  Google Scholar 

  35. Murillo Leo I, Lopez Granados M, Garcia Fierro JL, Mariscal R (2014) Chin J Catal 35:614–621

    Google Scholar 

  36. Hu L, Lin L, Wu Z, Zhou S, Liu S (2015) Appl Catal B-Environ 174:225–243

    Google Scholar 

  37. Li C, Wang Q, Zhao ZK (2008) Green Chem 10:177–182

    CAS  Google Scholar 

  38. Brandt A, Grasvik J, Hallett JP, Welton T (2013) Green Chem 15:550–583

    CAS  Google Scholar 

  39. Ribeiro LS, Orfao JJM, Pereira MFR (2015) Green Chem 17:2973–2980

    Google Scholar 

  40. Yabushita M, Kobayashi H, Hara K, Fukuoka A (2014) Cata Sci Technol 4:2312–2317

    CAS  Google Scholar 

  41. Lopez-Haro M, Delgado JJ, Cies JM, del Rio E, Bernal S, Burch R, Cauqui MA, Trasobares S, Perez-Omil JA, Bayle-Guillemaud P, Calvino JJ (2010) Angew Chem Int Ed 49:1981–1985

    CAS  Google Scholar 

  42. Shrotri A, Kobayashi H, Fukuoka A (2016) Chemcatchem 8:1059–1064

    CAS  Google Scholar 

  43. Liang G, He L, Cheng H, Li W, Li X, Zhang C, Yu Y, Zhao F (2014) J Catal 309:468–476

    CAS  Google Scholar 

  44. Esposito S, Silvestri B, Russo V, Bonelli B, Manzoli M, Deorsola FA, Vergara A, Aronne A, Di Serio M (2019) Acs Catal 9:3426–3436

    CAS  Google Scholar 

  45. Li Y, Lan G, Wang H, Tang H, Yan X, Liu H (2012) Catal Commun 20:29–35

    Google Scholar 

  46. Guo M, Lan G, Peng J, Li M, Yang Q, Li C (2016) J Mater Chem A 4:10956–10963

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Sichuan Province Science and Technology Support Program (Nos. 2018JY0615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Chen, T., Zhang, Y. et al. Effective Conversion of Cellulose to Sorbitol Catalyzed by Mesoporous Carbon Supported Ruthenium Combined with Zirconium Phosphate. Catal Lett 150, 2294–2303 (2020). https://doi.org/10.1007/s10562-020-03129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03129-8

Keywords

Navigation