Skip to main content
Log in

Dehydrogenation of 2,3-Butanediol to 3-Hydroxybutanone Over CuZnAl Catalysts: Effect of Lithium Cation as Promoter

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The dehydrogenation of 2,3-butanediol (BDO) to 3-hydroxybutanone (HBO) was studies over Li cation-doped CuZnAl catalysts. The catalyst samples were characterized by XRD, XPS, H2-TPR and SEM techniques. The characterization results showing that doping with Li cation obviously modified the surface morphology of CuZnAl catalysts; decreased the reduction temperature of CuZnAl catalysts; and finally increased the amount of Cu active sites. The reaction results showing that, Li modified CuZnAl catalysts obviously enhanced the selectivity of the dehydrogenation of BDO to HBO by inhibiting the dehydration of BDO. The Li(2%)–Cu(44%)–Zn(38%)–Al(16%) exhibited the highest activity for dehydrogenation of BDO, with the conversion rate of BDO is 72.4% and the selectivity of HBO is 95.9% at 260 °C. This catalyst shows excellent stability for more than 100 h without significant deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Molinnus D, Muschallik L, Gonzalez LO, Bongaerts J, Wagner T, Selmer T, Siegert P, Keusgen M, SchÖning MJ (2018) Development and characterization of a field-effect biosensor for the detection of acetoin. Biosens Bioelectron 115:1–6. https://doi.org/10.1016/j.bios.2018.05.023

    Article  PubMed  CAS  Google Scholar 

  2. Xiao Z, Lu J (2014) Generation of acetoin and its derivatives in foods. J SCI Food Agric 62:6487–6497. https://doi.org/10.1021/jf5013902

    Article  CAS  Google Scholar 

  3. Toda F, Tanaka K, Tange H (1989) Cheminform abstract: new reduction method of α-diketones, oxo amides, and quinones with Zn-EtOH in the presence of a salt. J Chem Soc 20(49):1555–1556. https://doi.org/10.1002/chin.198949081

    Article  Google Scholar 

  4. Faveri DD, Torre P, Molinari F, Perego P, Converti A (2003) Carbon material balances and bioenergetics of 2,3-butanediol bio-oxidation by acetobacter hansenii. Enzyme Microb Technol 33(5):708–719. https://doi.org/10.1016/S0141-0229(03)00218-7

    Article  CAS  Google Scholar 

  5. Romano A, Gandolfi R, Nitti P (2002) Acetic acid bacteria as enantioselective biocatalysts. J Mol Catal B 17(6):235–240. https://doi.org/10.1016/S1381-1177(02)00013-9

    Article  CAS  Google Scholar 

  6. Jónsdóttir R, Ólafsdóttir G, Chanie E, Haugen JE (2008) Volatile compounds suitable for rapid detection as quality indicators of cold smoked salmon (salmo salar). Food Chem 19(1):184–195. https://doi.org/10.1016/j.foodchem.2007.12.006

    Article  CAS  Google Scholar 

  7. David C, Robacker CR, He X (2004) Volatiles production and attractiveness to the mexican fruit fly ofenterobacter agglomeransisolated from apple maggot and mexican fruit flies. J Chem Ecol 30(7):1329–1347. https://doi.org/10.1023/b:joec.0000037743.98703.43

    Article  Google Scholar 

  8. Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33(2):127–140. https://doi.org/10.1080/10408410701364604

    Article  PubMed  CAS  Google Scholar 

  9. Gu Y, Duan X, Yang L, Guo L (2017) Direct C-H cyanoalkylation of heteroaromatic n-oxides and quinones via C-C bond cleavage of cyclobutanone oximes. Org Lett 19(21):5908–5911. https://doi.org/10.1021/acs.orglett.7b02902

    Article  PubMed  CAS  Google Scholar 

  10. Duan H, Sun D, Yamada Y, Sato S (2014) Dehydration of 2,3-butanediol into 3-buten-2-ol catalyzed by ZrO2. Catal Commun 48:1–4. https://doi.org/10.1016/j.catcom.2014.01.018

    Article  CAS  Google Scholar 

  11. Zhang L, Singh R, Sivakumar D, Guo Z, Li J, Chen F, He Y, Guan X, Kang YC, Lee J-K (2017) Artificial synthetic pathway for acetoin, 2,3-butanediol, and 2-butanol production from ethanol using cell free multi-enzyme catalysis. Green Chem 10:2–42. https://doi.org/10.1039/C7GC02898A

    Article  Google Scholar 

  12. Song D (2016) Kinetic model development for dehydration of 2,3-butanediol to 1,3-butadiene and methyl ethyl ketone over an amorphous calcium phosphate catalyst. Ind Eng Chem Res 14:2–25. https://doi.org/10.1021/acs.iecr.6b02930

    Article  CAS  Google Scholar 

  13. Zhang W, Yu D, Ji X, Huang H (2012) Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites. Green Chem 14(12):3441–3450. https://doi.org/10.1039/c2gc36324k

    Article  CAS  Google Scholar 

  14. Zheng Q, Xu J, Liu B, Hohn K (2018) Mechanistic study of the catalytic conversion of 2,3-butanediol to butenes. J Catal 360:221–239. https://doi.org/10.1016/j.jcat.2018.01.034

    Article  CAS  Google Scholar 

  15. Yen H-W, Li F, Wong CL (2014) The PH effects on the distribution of 1,3-propanediol and 2,3-butanediol produced simultaneously by using an isolated indigenous klebsiella sp.Ana-WS5. Bioprocess Biosyst Eng 37(3):425–431. https://doi.org/10.1007/s00449-013-1008-1

    Article  PubMed  CAS  Google Scholar 

  16. Sato S, Takahashi R, Fukuda H, Lnui K (2007) Dehydrogenation of 1,3-butanediol over Cu-based catalyst. J Mol Catal A 272:164–168. https://doi.org/10.1016/j.molcata.2007.03.034

    Article  CAS  Google Scholar 

  17. Zhang Q, Wu Z, Xu L (1998) High-pressure hydrogenolysis of diethyl maleate on Cu-Zn-Al-O catalysts. Ind Eng Chem Res 37(9):3525–3532. https://doi.org/10.1021/ie980178i

    Article  CAS  Google Scholar 

  18. Liu X, Wang L, Yan K, Zhang L, Xie X (2009) The study on the dehydrogenation ofcyclohexanol over complex oxides derived from CuZnAl hydrotalcite-like. Chem Res Appl 21(9):1250–1254. https://doi.org/10.1002/chir.20634

    Article  CAS  Google Scholar 

  19. Jung K-D, Joo O-S (2002) Preparation of Cu/ZnO/M2O3 (M = Al, Cr) Catalyst to stabilize Cu/ZnO catalyst in methanol dehydrogenation. Catal Lett 84(1):24–25. https://doi.org/10.1023/A:1021060130786

    Article  Google Scholar 

  20. Popova M, Dimitrov M, Santo VD, Ravasio N, Scotti N (2012) Dehydrogenation of cyclohexanol on copper containing catalysts:the role of the support and the preparation method. Catal Commun 17:150–153. https://doi.org/10.1016/j.catcom.2011.10.021

    Article  CAS  Google Scholar 

  21. Pepe F, Angeletti C, Rossi SD, Jacono ML (1985) Catalytic behavior and surface chemistry of copper/alumina catalysts for isopropanol decomposition. J Catal 91(1):69–77. https://doi.org/10.1016/0021-9517(85)90289-1

    Article  CAS  Google Scholar 

  22. Herman R, Klier K, Simmons G, Finn B, Bulko J, Kobylinski T (1979) Catalytic synthesis of methanol from carbon monoxide/hydrogen. Phase composition, electronic properties, and activities of the copper/zinc Oxide/M2O3 catalysts. J Catal 10(25):456–460. https://doi.org/10.1002/chin.197925142

    Article  Google Scholar 

  23. Liu X, Toyir J, Piscina PRDL, Homs N (2017) Hydrogen production from methanol steam reforming over Al2O3-and ZrO2-modified. Int J Hydrog Energy 42(19):13704–13711. https://doi.org/10.1016/j.ijhydene.2016.12.133

    Article  CAS  Google Scholar 

  24. Tan Y, Xie H, Cui H, Han Y, Zhong B (2005) Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase. Catal Today 104(1):25–29. https://doi.org/10.1016/j.cattod.2005.03.033

    Article  CAS  Google Scholar 

  25. Park N-J (1996) Texture in CuZnAl shape memory alloys. Met Mater Int 2(3):159–168. https://doi.org/10.1007/BF03026090

    Article  CAS  Google Scholar 

  26. Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: catalyst characterization and performance evaluation. J Catal 194(2):373–384. https://doi.org/10.1006/jcat.2000.2940

    Article  CAS  Google Scholar 

  27. Huang W, Yu L, Li W, Ma Z (2010) Synthesis of methanol and ethanol over CuZnAl slurry catalyst prepared by complete liquid-phase technology. Front Chem Eng China 4(4):472–475. https://doi.org/10.1007/s11705-010-0525-6

    Article  CAS  Google Scholar 

  28. Choi SM, Kang YJ, Kim SW (2018) Effect of γ-alumina nanorods on CO hydrogenation to higher alcohols over lithium-promoted CuZn-based catalysts. Appl Catal A 549:188–196. https://doi.org/10.1016/j.apcata.2017.10.001

    Article  CAS  Google Scholar 

  29. Salavati-Niasari M, Davar F, Farhadi M (2009) Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol–gel method. J Sol-Gel Sci Technol 51(1):48–52. https://doi.org/10.1007/s10971-009-1940-3

    Article  CAS  Google Scholar 

  30. Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC (1988) Synthesis of methanol: part 1. Catalysts and kinetics. Appl Catal 36(1–2):1–65. https://doi.org/10.1016/S0166-9834(00)80103-7

    Article  CAS  Google Scholar 

  31. Gao Z, Li S, Tian H, Dong W, Liu Y, Jia L, Huang W (2017) Synthesis of ethanol from syngas over CuZnAl catalysts with different Cu/Zn/Al molar ratios in polyethylene glycol 600 medium. React Kinet Mech Catal 122(2):1–11. https://doi.org/10.1007/s11144-017-1270-3

    Article  CAS  Google Scholar 

  32. Gao Z, Huang W, Wang J, Yin L, Xie K (2008) Studies on the structure and catalyticperformance of Cu-Zn-Al catalyst prepared by liquid-phase preparation technology under different heat treatment atmosphere. J Nat Gas Chem 66(3):295–300. https://doi.org/10.1016/S1003-9953(09)60131-6

    Article  CAS  Google Scholar 

  33. Liu Y, Lei J, Deng X, Huang W, Vinokurov VA (2018) Promotional influence of hydroxyl complexing agent on ethanol synthesis from syngas over CuZnAl catalysts without other metal promoters. Catal Lett 148(11):3477–3485. https://doi.org/10.1007/s10562-018-2545-7

    Article  CAS  Google Scholar 

  34. Li X, Zhang J, Zhang M, Zhang W, Zhang M, Xie H, Wu Y, Tan Y (2019) The support effects on the direct conversion of syngas to higher alcohol synthesis over copper-based catalysts. Catalysts 9(2):199. https://doi.org/10.3390/catal9020199

    Article  CAS  Google Scholar 

  35. Gao P, Li F, Zhan H, Zhao N, Xiao F, Wei W, Zhong L, Wang H, Sun Y (2013) Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J Catal 298:51–56. https://doi.org/10.1016/j.jcat.2012.10.030

    Article  CAS  Google Scholar 

  36. Kühl S, Tarasov A, Zander S, Kasatkin I, Behrens M (2014) Cu-based catalyst resulting from a Cu, Zn, Al, hydrotalcite-like compound: a microstructural, thermoanalytical, and in-situ XAS study. Chem-Eur J 20(13):3782–3792. https://doi.org/10.1002/chem.201302599

    Article  PubMed  CAS  Google Scholar 

  37. Gao J, Thomas DA, Sohn CH, Beauchamp JL (2013) Biomimetic reagents for the selective free radical and acid–base chemistry of glycans: application to glycan structure determination by mass spectrometry. J Am Chem Soc 135(29):10684–10692. https://doi.org/10.1021/ja402810t

    Article  PubMed  CAS  Google Scholar 

  38. Wang C, Wang Y, Liu W, Yin H, Yuan Z, Wang Q, Xie H, Cheng R (2012) Naturalfibrous nanoclay reinforced soy polyol-based polyurethane. Mater Lett 78:85–87. https://doi.org/10.1016/j.matlet.2012.03.067

    Article  CAS  Google Scholar 

  39. Shishido T, Yamamoto M, Li D, Tian Y (2006) Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation. Appl Catal A 303(1):62–71. https://doi.org/10.1016/j.apcata.2006.01.031

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Su or Jian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhou, F., Ma, H. et al. Dehydrogenation of 2,3-Butanediol to 3-Hydroxybutanone Over CuZnAl Catalysts: Effect of Lithium Cation as Promoter. Top Catal 63, 866–874 (2020). https://doi.org/10.1007/s11244-020-01308-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01308-w

Keywords

Navigation