Skip to main content
Log in

Synthesis of a Sustainable Cellulose-Derived Biofuel Through a 1-Pot, 2-Catalyst Tandem Reaction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The preparation, characterisation and application of two catalysts active in selective hydrogenation (Pt/TiO2) and esterification (mesoporous SiO2 material modified with tethered sulfonic acid groups) reactions is described. The catalysts are characterised using a range of spectroscopic, microscopic and adsorption techniques. Pt/TiO2 catalysts promote valeric acid (a cellulose derived platform molecule) hydrogenation to pentanol, while –SO3H modified mesoporous SiO2 catalysts convert valeric acid/pentanol mixtures to pentyl valerate (a 10-C molecule which can be used as a diesel fuel substitute). Admixtures of the two catalysts catalyse the tandem conversion of valeric acid/hydrogen mixtures to form pentyl valerate in a single reaction. A rationale for the observed reactivity, selectivity and carbon balance is proposed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Flach B, Lieberz S, Rossetti A (2017) EU Annual Biofuels Annual 2017.

  2. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf. Accessed 24 Feb 2020

  3. Eze VC, Harvey AP, Phan AN (2015) Fuel 140:724–730

    Article  CAS  Google Scholar 

  4. Tomei J, Helliwell R (2016) Land Use Pol 56:320–326

    Article  Google Scholar 

  5. FAO Food Price Index | World Food Situation | Food and Agriculture Organization of the United Nations.” https://www.fao.org/worldfoodsituation/foodpricesindex/en/. Accessed 24 Feb 2020

  6. Mohr A, Raman S (2013) Energy Pol 63(3–7):114–122

    Article  Google Scholar 

  7. Havlík P, Schneider UA, Schmid E, Böttcher H, Fritz S, Skalský R, Aoki K, Cara SD, Kindermann G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Energy Pol 39(10):5690–5702

    Article  Google Scholar 

  8. Yi ZX, Hu D, Xu H, Wu ZT, Zhang M, Yan K (2020) Fuel 259:116208

    Article  CAS  Google Scholar 

  9. Chan-Thaw CE, Marelli M, Psaro R, Ravasio N, Zaccheria F (2013) RSC Adv 3(5):1302–1306

    Article  CAS  Google Scholar 

  10. Pan T, Deng J, Xu Q, Xu Y, Guo Q-X, Fu Y (2013) Green Chem 15(10):2967

    Article  CAS  Google Scholar 

  11. Dong L-L, He L, Tao G-H, Hu C (2013) RSC Adv 3(14):4806

    Article  CAS  Google Scholar 

  12. Zhou J, Zhu R, Deng J, Fu Y (2018) Green Chem 20:3974–3980

    Article  CAS  Google Scholar 

  13. Luo WH, Deka U, Beale AM, van Eck ERH, Bruijnincx PCA, Weckhuysen BM (2013) J Catal 301:175

    Article  CAS  Google Scholar 

  14. Sun P, Gao G, Zhao Z, Xia C, Li F (2014) ACS Catal 4:4136–4142

    Article  CAS  Google Scholar 

  15. Villa A, Schiavoni M, Chan-Thaw CE, Fulvio PF, Mayes RT, Dai S, More KL, Veith GM, Prati L (2015) ChemSusChem 8:2520–2528

    Article  CAS  Google Scholar 

  16. Sen SM, Alonso DM, Wettstein SG, Gürbüz EI, Henao CA, Maraveliaa C, Dumesic JA (2012) Energy Environ Sci 5:9690

    Article  CAS  Google Scholar 

  17. Moldonado GMG, Assary RS, Curtiss LA, Dumesic JA (2012) Energy Environ Sci 5:8990

    Article  Google Scholar 

  18. Rackemann DW, Doherty WOS (2011) Biofuels Bioprod Biorefin 5:198–214

    Article  CAS  Google Scholar 

  19. Bhanuchander P, Samudrala SP, Putrakumar B, Vijayanand P, Kumar BS, Chary KVR (2019) New J Chem 43:18003–18011

    Article  CAS  Google Scholar 

  20. Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Angew Chem Int Ed 49(26):4479–4483

    Article  CAS  Google Scholar 

  21. Chan-Thaw CE, Marelli M, Psaro R, Ravasio N, Zaccheria F (2013) RSC Adv 3:1302–1306

    Article  CAS  Google Scholar 

  22. Munoz-Olasagasti M, Sanudo-Mena A, Cecilia JA, Granados ML, Maireles-Torres P, Mariscal R (2019) Top Catal 62:579–588

    Article  CAS  Google Scholar 

  23. Liu S, Fan G, Yang L, Li F (2017) Appl Catal A 543:180–188

    Article  CAS  Google Scholar 

  24. Liu D-H, Marks TJ, Li Z (2019) ChemSusChem 12:5217–5223

    Article  CAS  Google Scholar 

  25. Yu Z, Lu X, Xiong J, Ji N (2019) ChemSusChem 12:3915–3930

    Article  CAS  Google Scholar 

  26. Sullivan JA, Keane O, Dulgheru P, O'Callaghan N (2015) In: Tiwari A, Titinchi S (ed) Advanced catalytic materials. Scrivener, Hoboken, New Jersey, p 3–36

  27. Zhao D, Sun J, Li Q, Stucky GD, Barbara S (2000) Chem Mater 12(2):275–279

    Article  CAS  Google Scholar 

  28. Van Bergen LAH, Roos G, De Proft F (2014) J Phys Chem A 118(31):6078–6084

    Article  Google Scholar 

  29. Cano-Serrano E, Blanco-Brieva G, Campos-Martin JM, Fierro JLG (2003) Langmuir 19(18):7621–7627

    Article  CAS  Google Scholar 

  30. https://www.andersonmaterials.com/elemental-composition-analysis.html. Accessed 24 Feb 2020

  31. Mbaraka IK, Radu DR, Lin VSY, Shanks BH (2003) J Catal 219(2):329–336

    Article  CAS  Google Scholar 

  32. Zheng Y, Su X, Zhang X, Wei W, Sun Y, Abdelhamid S, Mietek J (2005) Stud Surf Sci Catal 156:205–212

    Article  CAS  Google Scholar 

  33. Sherry L, Sullivan JA (2011) Catal Today 175:471–476

    Article  CAS  Google Scholar 

  34. EVONIK Resource Efficiency GmbH (2014) AEROXIDE® TiO2 P25, p 1–2

  35. Rozmysłowicz B, Kirilin A, Aho A, Manyar H, Hardacre C, Wärnå J, Salmi T, Murzin DY (2015) J Catal 328:197–207

    Article  Google Scholar 

  36. Manyar HG, Paun C, Pilus R, Rooney DW, Thompson JM, Hardacre C (2010) Chem Commun 46(34):6279

    Article  CAS  Google Scholar 

  37. Suknev A, Zaikovskii V, Kaichev V, Paukshtis E, Sadovskaya E, Bal’Zhinimaev B (2015) J Energy Chem 24(5):646–654

    Article  Google Scholar 

  38. Ullrich J, Breit B (2018) ACS Catal 11:41

    Google Scholar 

Download references

Acknowledgements

The UCD School of Chemistry provided a studentship and funding for LM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Sullivan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullins, L., Sullivan, J.A. Synthesis of a Sustainable Cellulose-Derived Biofuel Through a 1-Pot, 2-Catalyst Tandem Reaction. Top Catal 63, 1434–1445 (2020). https://doi.org/10.1007/s11244-020-01252-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01252-9

Keywords

Navigation