Skip to main content

Advertisement

Log in

H2 Dissociation and Oxygen Vacancy Formation on Ce2O3 Surfaces

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

H2 dissociation on ceria (CeO2) has attracted much attention in the last years because of its potential application in catalysis for hydrogenation reactions, as well as for the stabilization of hydride bulk and surface species. The ability of ceria to split hydrogen is strongly dependent on the surface morphology. However, to the best of our knowledge, the reactivity of the cerium sesquioxide Ce2O3 A-type (hexagonal structure with space group \(P\bar{3}m1\)) has not been previously addressed. In the present study, we investigate (i) the formation of oxygen vacancies in A-Ce2O3 bulk and (ii) the effect of the surface topology in the H2 dissociation and in the oxygen vacancy formation for the four most stable surfaces of A-Ce2O3: (0001), (01− 11), (11− 20) and (11− 21). Our results indicate a significant decrease of the energetic barrier for the hydrogen dissociation compared to stoichiometric CeO2, with an activation energy of ~ 0.1 eV. Interestingly, Ce2O3 surfaces lead to a heterolytic product with hydride species more stable than the homolytic product, which is the opposite behavior found in CeO2. These results suggest a better performance of Ce2O3 than CeO2 for H2 dissociation and provide insight in the nature of hydride-Ce2O3 interfaces that could be important intermediates in the formation of CeHx phases from cerium oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935. https://doi.org/10.1126/science.1085721

    Article  CAS  PubMed  Google Scholar 

  2. Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Renewable hydrogen from ethanol by autothermal reforming. Science 303(5660):993. https://doi.org/10.1126/science.1093045

    Article  CAS  PubMed  Google Scholar 

  3. Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170

    Article  CAS  Google Scholar 

  4. Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B 95(1–3):73–77. https://doi.org/10.1016/S0925-4005(03)00407-6

    Article  CAS  Google Scholar 

  5. Trovarelli A, Fornasiero P (2013) Catalysis by ceria and related materials. Catalytic science series, 2nd edn. Imperial College Press, London

    Book  Google Scholar 

  6. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50(2):353–367. https://doi.org/10.1016/S0920-5861(98)00515-X

    Article  CAS  Google Scholar 

  7. Aneggi E, Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A (2006) Insights into the redox properties of ceria-based oxides and their implications in catalysis. J Alloys Compd 408–412:1096–1102. https://doi.org/10.1016/j.jallcom.2004.12.113

    Article  CAS  Google Scholar 

  8. Lawrence NJ, Brewer JR, Wang L, Wu T-S, Wells-Kingsbury J, Ihrig MM, Wang G, Soo Y-L, Mei W-N, Cheung CL (2011) Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano Lett 11(7):2666–2671. https://doi.org/10.1021/nl200722z

    Article  CAS  PubMed  Google Scholar 

  9. Castleton CWM, Kullgren J, Hermansson K (2007) Tuning LDA + U for electron localization and structure at oxygen vacancies in ceria. J Chem Phys 127(24):244704. https://doi.org/10.1063/1.2800015

    Article  CAS  PubMed  Google Scholar 

  10. Da Silva JLF (2007) Stability of the Ce2O3 phases: A DFT + U investigation. Phys Rev B. https://doi.org/10.1103/PhysRevB.76.193108

    Article  Google Scholar 

  11. Nolan M, Parker SC, Watson GW (2005) The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf Sci 595(1–3):223–232. https://doi.org/10.1016/j.susc.2005.08.015

    Article  CAS  Google Scholar 

  12. Torbrügge S, Reichling M, Ishiyama A, Morita S, Custance Ó (2007) Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). Phys Rev Lett 99(5):056101. https://doi.org/10.1103/PhysRevLett.99.056101

    Article  CAS  PubMed  Google Scholar 

  13. Gritschneder S, Reichling M (2007) Structural elements of CeO2 (111) surfaces. Nanotechnology 18(4):044024. https://doi.org/10.1088/0957-4484/18/4/044024

    Article  CAS  Google Scholar 

  14. Murgida GE, Ganduglia-Pirovano MV (2013) Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2 (111) surface using density-functional and statistical calculations. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.110.246101

    Article  PubMed  Google Scholar 

  15. Duchoň T, Dvořák F, Aulická M, Stetsovych V, Vorokhta M, Mazur D, Veltruská K, Skála T, Mysliveček J, Matolínová I et al (2014) Ordered phases of reduced ceria as epitaxial films on Cu(111). J Phys Chem C 118(1):357–365. https://doi.org/10.1021/jp409220p

    Article  CAS  Google Scholar 

  16. Olbrich R, Murgida GE, Ferrari V, Barth C, Llois AM, Reichling M, Ganduglia-Pirovano MV (2017) Surface stabilizes ceria in unexpected stoichiometry. J Phys Chem C 121(12):6844–6851. https://doi.org/10.1021/acs.jpcc.7b00956

    Article  CAS  Google Scholar 

  17. Gordon WO, Xu Y, Mullins DR, Overbury SH (2009) Temperature evolution of structure and bonding of formic acid and formate on fully oxidized and highly reduced CeO2(111). Phys Chem Chem Phys 11(47):11171. https://doi.org/10.1039/b913310k

    Article  CAS  PubMed  Google Scholar 

  18. Mullins DR, Albrecht PM, Calaza F (2013) Variations in reactivity on different crystallographic orientations of cerium oxide. Top Catal 56(15–17):1345–1362. https://doi.org/10.1007/s11244-013-0146-7

    Article  CAS  Google Scholar 

  19. Wu X-P, Gong X-Q, Lu G (2015) Role of oxygen vacancies in the surface evolution of H at CeO2 (111): a charge modification effect. Phys Chem Chem Phys 17(5):3544–3549. https://doi.org/10.1039/C4CP04766D

    Article  CAS  PubMed  Google Scholar 

  20. Kumari N, Haider MA, Agarwal M, Sinha N, Basu S (2016) Role of reduced CeO2 (110) surface for CO2 reduction to CO and methanol. J Phys Chem C 120(30):16626–16635. https://doi.org/10.1021/acs.jpcc.6b02860

    Article  CAS  Google Scholar 

  21. Zhao C, Xu Y (2017) Simulated temperature programmed desorption of acetaldehyde on CeO2(111): evidence for the role of oxygen vacancy and hydrogen transfer. Top Catal 60(6–7):446–458. https://doi.org/10.1007/s11244-016-0703-y

    Article  CAS  Google Scholar 

  22. Ghoshal T, Fleming PG, Holmes JD, Morris MA (2012) The stability of “Ce2O3” nanodots in ambient conditions: a study using block copolymer templated structures. J Mater Chem 22(43):22949. https://doi.org/10.1039/c2jm35073d

    Article  CAS  Google Scholar 

  23. Hamm CM, Alff L, Albert B (2014) Synthesis of microcrystalline Ce2O3 and formation of solid solutions between cerium and lanthanum oxides. Z Für Anorg Allg Chem 640(6):1050–1053. https://doi.org/10.1002/zaac.201300663

    Article  CAS  Google Scholar 

  24. Merrifield RC, Arkill KP, Palmer RE, Lead JR (2017) A high resolution study of dynamic changes of Ce2O3 and CeO2 nanoparticles in complex environmental media. Environ Sci Technol 51(14):8010–8016. https://doi.org/10.1021/acs.est.7b01130

    Article  CAS  PubMed  Google Scholar 

  25. Nadaroglu H, Onem H, Alayli Gungor A (2017) Green synthesis of Ce2O3 NPs and determination of its antioxidant activity. IET Nanobiotechnol 11(4):411–419. https://doi.org/10.1049/iet-nbt.2016.0138

    Article  PubMed  Google Scholar 

  26. Höcker J, Krisponeit J-O, Schmidt T, Falta J, Flege JI (2017) The cubic-to-hexagonal phase transition of cerium oxide particles: dynamics and structure. Nanoscale 9(27):9352–9358. https://doi.org/10.1039/C6NR09760J

    Article  PubMed  Google Scholar 

  27. Xiao W, Guo Q, Wang EG (2003) Transformation of CeO2 (111) to Ce2O3 (0001) films. Chem Phys Lett 368(5–6):527–531. https://doi.org/10.1016/S0009-2614(02)01889-4

    Article  CAS  Google Scholar 

  28. Vilé G, Bridier B, Wichert J, Pérez-Ramírez J (2012) Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. Angew Chem Int Ed 51(34):8620–8623. https://doi.org/10.1002/anie.201203675

    Article  CAS  Google Scholar 

  29. Carrasco J, Vilé G, Fernández-Torre D, Pérez R, Pérez-Ramírez J, Ganduglia-Pirovano MV (2014) Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J Phys Chem C 118(10):5352–5360. https://doi.org/10.1021/jp410478c

    Article  CAS  Google Scholar 

  30. Vilé G, Dähler P, Vecchietti J, Baltanás M, Collins S, Calatayud M, Bonivardi A, Pérez-Ramírez J (2015) Promoted ceria catalysts for alkyne semi-hydrogenation. J Catal 324:69–78. https://doi.org/10.1016/j.jcat.2015.01.020

    Article  CAS  Google Scholar 

  31. Werner K, Weng X, Calaza F, Sterrer M, Kropp T, Paier J, Sauer J, Wilde M, Fukutani K, Shaikhutdinov S et al (2017) Toward an understanding of selective alkyne hydrogenation on ceria: on the impact of O vacancies on H2 interaction with CeO2 (111). J Am Chem Soc 139(48):17608–17616. https://doi.org/10.1021/jacs.7b10021

    Article  CAS  PubMed  Google Scholar 

  32. Désaunay T, Bonura G, Chiodo V, Freni S, Couzinié J-P, Bourgon J, Ringuedé A, Labat F, Adamo C, Cassir M (2013) Surface-dependent oxidation of H2 on CeO2 surfaces. J Catal 297:193–201. https://doi.org/10.1016/j.jcat.2012.10.011

    Article  CAS  Google Scholar 

  33. García-Melchor M, López N (2014) Homolytic products from heterolytic paths in H2 dissociation on metal oxides: the example of CeO2. J Phys Chem C 118(20):10921–10926. https://doi.org/10.1021/jp502309r

    Article  CAS  Google Scholar 

  34. Fernández-Torre D, Carrasco J, Ganduglia-Pirovano MV, Pérez R (2014) Hydrogen activation, diffusion, and clustering on CeO2 (111): a DFT + U study. J Chem Phys 141(1):014703. https://doi.org/10.1063/1.4885546

    Article  CAS  PubMed  Google Scholar 

  35. Wu Z, Cheng Y, Tao F, Daemen L, Foo GS, Nguyen L, Zhang X, Beste A, Ramirez-Cuesta AJ (2017) Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. J Am Chem Soc 139(28):9721–9727. https://doi.org/10.1021/jacs.7b05492

    Article  CAS  PubMed  Google Scholar 

  36. Huang Z-Q, Liu L-P, Qi S, Zhang S, Qu Y, Chang C-R (2018) Understanding all-solid frustrated-lewis-pair sites on CeO2 from theoretical perspectives. ACS Catal 8(1):546–554. https://doi.org/10.1021/acscatal.7b02732

    Article  CAS  Google Scholar 

  37. Dvořák F, Szabová L, Johánek V, Farnesi Camellone M, Stetsovych V, Vorokhta M, Tovt A, Skála T, Matolínová I, Tateyama Y et al (2018) Bulk hydroxylation and effective water splitting by highly reduced cerium oxide: the role of O vacancy coordination. ACS Catal 8(5):4354–4363. https://doi.org/10.1021/acscatal.7b04409

    Article  CAS  Google Scholar 

  38. Matz O, Calatayud M (2018) Breaking H2 with CeO2: effect of surface termination. ACS Omega 3(11):16063–16073. https://doi.org/10.1021/acsomega.8b02410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vecchietti J, Baltanás MA, Gervais C, Collins SE, Blanco G, Matz O, Calatayud M, Bonivardi A (2017) Insights on hydride formation over cerium-gallium mixed oxides: a mechanistic study for efficient H2 dissociation. J Catal 345:258–269. https://doi.org/10.1016/j.jcat.2016.11.029

    Article  CAS  Google Scholar 

  40. Pacchioni G (2015) Numerical simulations of defective structures: the nature of oxygen vacancy in non-reducible (MgO, SiO2, ZrO2) and reducible (TiO2, NiO, WO3) oxides. In: Jupille J, Thornton G (eds) Defects at oxide surfaces, vol 58. Springer, Cham, pp 1–28

    Google Scholar 

  41. Barteau MA (1996) Organic reactions at well-defined oxide surfaces. Chem Rev 96(4):1413–1430. https://doi.org/10.1021/cr950222t

    Article  CAS  PubMed  Google Scholar 

  42. Calatayud M, Markovits A, Menetrey M, Mguig B, Minot C (2003) Adsorption on perfect and reduced surfaces of metal oxides. Catal Today 85(2–4):125–143. https://doi.org/10.1016/S0920-5861(03)00381-X

    Article  CAS  Google Scholar 

  43. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  44. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  45. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  46. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  47. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  48. Kresse G, Joubert D (1999) From Ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  49. Kullgren J, Castleton CWM, Müller C, Ramo DM, Hermansson K (2010) B3LYP calculations of cerium oxides. J Chem Phys 132(5):054110. https://doi.org/10.1063/1.3253795

    Article  CAS  PubMed  Google Scholar 

  50. Skorodumova NV, Ahuja R, Simak SI, Abrikosov IA, Johansson B, Lundqvist BI (2001) Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles. Phys Rev B. https://doi.org/10.1103/PhysRevB.64.115108

    Article  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  52. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett. 78(7):1396. https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  53. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904. https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  54. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985. https://doi.org/10.1063/1.1323224

    Article  CAS  Google Scholar 

  55. Henkelman G, Jónsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022. https://doi.org/10.1063/1.480097

    Article  CAS  Google Scholar 

  56. Heyden A, Bell AT, Keil FJ (2005) Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J Chem Phys 123(22):224101. https://doi.org/10.1063/1.2104507

    Article  CAS  PubMed  Google Scholar 

  57. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73(2):515–562. https://doi.org/10.1103/RevModPhys.73.515

    Article  CAS  Google Scholar 

  58. Karhánek D, Bučko T, Hafner J (2010) A density-functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: II. Vibrational spectroscopy. J Phys Condens Matter 22(26):265006. https://doi.org/10.1088/0953-8984/22/26/265006

    Article  CAS  PubMed  Google Scholar 

  59. Huntelaar ME, Booij AS, Cordfunke EHP, van der Laan RR, van Genderen ACG, van Miltenburg JC (2000) The thermodynamic properties of Ce2O3(s) from T → 0 K to 1500 K. J Chem Thermodyn 32(4):465–482. https://doi.org/10.1006/jcht.1999.0614

    Article  CAS  Google Scholar 

  60. Mullins DR (2015) The surface chemistry of cerium oxide. Surf Sci Rep 70(1):42–85. https://doi.org/10.1016/j.surfrep.2014.12.001

    Article  CAS  Google Scholar 

  61. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys. Rev. B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  62. Pinto H, Mintz MH, Melamud M, Shaked H (1982) Neutron diffraction study of Ce2O3. Phys Lett A 88(2):81–83. https://doi.org/10.1016/0375-9601(82)90596-5

    Article  Google Scholar 

  63. Bärnighausen H, Schiller G (1985) The crystal structure of A-Ce2O3. J Common Met 110(1–2):385–390. https://doi.org/10.1016/0022-5088(85)90347-9

    Article  Google Scholar 

  64. Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G (2005) Taming multiple valency with density functionals: a case study of defective ceria. Phys Rev B. https://doi.org/10.1103/PhysRevB.71.041102

    Article  Google Scholar 

  65. Mikami M, Nakamura S (2006) Electronic structure of rare-earth sesquioxides and oxysulfides. J Alloys Compd 408–412:687–692. https://doi.org/10.1016/j.jallcom.2005.01.068

    Article  CAS  Google Scholar 

  66. Hay PJ, Martin RL, Uddin J, Scuseria GE (2006) Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. J Chem Phys 125(3):034712. https://doi.org/10.1063/1.2206184

    Article  CAS  Google Scholar 

  67. Loschen C, Carrasco J, Neyman KM, Illas F (2007) First-principles LDA + U and GGA + U study of cerium oxides: dependence on the effective U parameter. Phys Rev B. https://doi.org/10.1103/PhysRevB.75.035115

    Article  Google Scholar 

  68. Andersson DA, Simak SI, Johansson B, Abrikosov IA, Skorodumova NV (2007) Modeling of CeO2, Ce2O3, and CeO2–x in the LDA + U formalism. Phys Rev B 75(3):035109. https://doi.org/10.1103/PhysRevB.75.035109

    Article  CAS  Google Scholar 

  69. Da Silva JLF, Ganduglia-Pirovano MV, Sauer J, Bayer V, Kresse G (2007) Hybrid functionals applied to rare-earth oxides: the example of ceria. Phys Rev B. https://doi.org/10.1103/PhysRevB.75.045121

    Article  Google Scholar 

  70. Graciani J, Márquez AM, Plata JJ, Ortega Y, Hernández NC, Meyer A, Zicovich-Wilson CM, Sanz JF (2011) Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: the case of CeO2 and Ce2O3. J Chem Theory Comput 7(1):56–65. https://doi.org/10.1021/ct100430q

    Article  CAS  PubMed  Google Scholar 

  71. Helali Z, Jedidi A, Syzgantseva OA, Calatayud M, Minot C (2017) Scaling reducibility of metal oxides. Theor. Chem. Acc. https://doi.org/10.1007/s00214-017-2130-y

    Article  Google Scholar 

  72. Nolan M, Fearon J, Watson G (2006) Oxygen vacancy formation and migration in ceria. Solid State Ion. 177(35–36):3069–3074. https://doi.org/10.1016/j.ssi.2006.07.045

    Article  CAS  Google Scholar 

  73. Kullgren J, Hermansson K, Castleton C (2012) Many competing ceria (110) oxygen vacancy structures: from small to large supercells. J Chem Phys 137(4):044705. https://doi.org/10.1063/1.4723867

    Article  CAS  PubMed  Google Scholar 

  74. Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2 (111). Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.102.026101

    Article  PubMed  Google Scholar 

  75. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci 36(3):354–360. https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  76. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for bader charge allocation. J Comput Chem 28(5):899–908. https://doi.org/10.1002/jcc.20575

    Article  CAS  PubMed  Google Scholar 

  77. Tang W, Sanville E, Henkelman G (2009) A grid-based bader analysis algorithm without lattice bias. J Phys: Condens Matter 21(8):084204. https://doi.org/10.1088/0953-8984/21/8/084204

    Article  CAS  Google Scholar 

  78. Yu M, Trinkle DR (2011) Accurate and efficient algorithm for bader charge integration. J Chem Phys 134(6):064111

    Article  Google Scholar 

  79. Anderson AB, Nichols JA (1986) Hydrogen on zinc oxide. Theory of its heterolytic adsorption. J Am Chem Soc 108(16):4742–4746. https://doi.org/10.1021/ja00276a010

    Article  CAS  Google Scholar 

  80. Anchell JL, Morokuma K, Hess AC (1993) An electronic structure study of H2 and CH4 interactions with MgO and Li-doped MgO clusters. J Chem Phys 99(8):6004–6013. https://doi.org/10.1063/1.465899

    Article  CAS  Google Scholar 

  81. Pisani C, D’ercole A (2000) Electrostatic effects in the heterolytic dissociation of hydrogen at magnesium oxide. In: Maruani J, Minot C, McWeeny R, Smeyers YG, Wilson S, Lipscomb WN, Prigogine I, Maruani J, Wilson S, Ågren H, Avnir D, Cioslowski J, Daudel R, Gross EKU, van Gunsteren WF et al (eds) New trends in quantum systems in chemistry and physics, vol 7. Springer, Dordrecht, pp 247–255

    Chapter  Google Scholar 

  82. Syzgantseva OA, Calatayud M, Minot C (2012) Revealing the surface reactivity of zirconia by periodic DFT calculations. J Phys Chem C 116(11):6636–6644. https://doi.org/10.1021/jp209898q

    Article  CAS  Google Scholar 

  83. Santos E, Quaino P, Schmickler W (2012) Theory of electrocatalysis: hydrogen evolution and more. Phys Chem Chem Phys 14(32):11224. https://doi.org/10.1039/c2cp40717e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Scienomics for the MAPS program used in the construction of the slab models for a courtesy license. Dr. B. Diawara is acknowledged for the Modelview program. This work was performed using HPC resources from GENCI-CINES/IDRIS (Grant Nos. 2018-x2018082131 and 2017-x2017082131), and the PER-SU iDROGEN project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Calatayud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11244_2019_1183_MOESM1_ESM.docx

Results of the choice of the cutoff for the bulk and thickness convergence tests for all the slab model. The structures (POSCAR format) of bare slabs, TS and (H+,H) minima were also given. The DOS and PDOS of oxygen vacancies as well as the different steps involved in H2 dissociation were provided for all the surfaces. Supplementary material 1 (DOCX 26501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matz, O., Calatayud, M. H2 Dissociation and Oxygen Vacancy Formation on Ce2O3 Surfaces. Top Catal 62, 956–967 (2019). https://doi.org/10.1007/s11244-019-01183-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01183-0

Keywords

Navigation