Skip to main content
Log in

Oxygen adatoms and vacancies on the (110) surface of CeO2

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The behavior of oxygen on ceria surfaces is closely related with the applications of ceria as a catalyst and oxygen conductor in solid-oxide fuel cells. Here, the atomic configurations of oxygen adatoms and vacancies on the (110) surface of CeO2 have been studied combining aberration-corrected transmission electron microscopy and first-principles calculations. The oxygen adatoms were estimated to be located on top of Ce atoms with 50% coverage, forming a c(2×2) reconstruction. The oxygen vacancies can form stable configuration, with the Ce atoms partly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal Rev, 1996, 38: 439–520

    Article  Google Scholar 

  2. Zhan W, Guo Y, Gong X, et al. Current status and perspectives of rare earth catalytic materials and catalysis. Chin J Catal, 2014, 35: 1238–1250

    Article  Google Scholar 

  3. Kašpar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catal Today, 1999, 50: 285–298

    Article  Google Scholar 

  4. Ling Y, Wang Z, Wang Z, et al. A robust carbon tolerant anode for solid oxide fuel cells. Sci China Mater, 2015, 58: 204–212

    Article  Google Scholar 

  5. Wang J S, Dong L R, Liu W, et al. Progress on RE2O3-Mo/W matrix secondary emitter materials. Sci China Tech Sci, 2017, 60: 1439–1446

    Article  Google Scholar 

  6. Baudin M, Wójcik M, Hermansson K. Dynamics, structure and energetics of the (111), (011) and (001) surfaces of ceria. Surf Sci, 2000, 468: 51–61

    Article  Google Scholar 

  7. Huang J L, Yu Y B, Zhu J, et al. Atomic layer reversal on CeO2 (100) surface. Sci China Mater, 2017, doi: 10.1007/s4084

    Google Scholar 

  8. Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed, 2008, 47: 2884–2887

    Article  Google Scholar 

  9. Esch F, Fabris S, Zhou L, et al. Electron localization determines defect formation on ceria substrates. Science, 2005, 309: 752–755

    Article  Google Scholar 

  10. Murgida G E, Ganduglia-Pirovano M V. Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2 (111) surface using density-functional and statistical calculations. Phys Rev Lett, 2013, 110: 246101

    Article  Google Scholar 

  11. Möbus G, Saghi Z, Sayle D C, et al. Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution. Adv Funct Mater, 2011, 21: 1971–1976

    Article  Google Scholar 

  12. Cordeiro M A L, Weng W, Stroppa D G, et al. High resolution electron microscopy study of nanocubes and polyhedral nanocrystals of cerium(IV) oxide. Chem Mater, 2013, 25: 2028–2034

    Article  Google Scholar 

  13. Pfau A, Schierbaum K D. The electronic structure of stoichiometric and reduced CeO2 surfaces: An XPS, UPS and HREELS study. Surf Sci, 1994, 321: 71–80

    Article  Google Scholar 

  14. Haigh S J, Young N P, Sawada H, et al. Imaging the active surfaces of cerium dioxide nanoparticles. ChemPhysChem, 2011, 12: 2397–2399

    Article  Google Scholar 

  15. Bhatta U M, Ross I M, Sayle T X T, et al. Cationic surface reconstructions on cerium oxide nanocrystals: An aberration-corrected HRTEM study. ACS Nano, 2012, 6: 421–430

    Article  Google Scholar 

  16. Lin Y, Wu Z, Wen J, et al. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett, 2014, 14: 191–196

    Article  Google Scholar 

  17. Yang Z, Yu X, Lu Z, et al. Oxygen vacancy pairs on CeO2 (110): A DFT+U study. Phys Lett A, 2009, 373: 2786–2792

    Article  Google Scholar 

  18. Herschend B, Baudin M, Hermansson K. Electronic structure of the CeO2 (110) surface oxygen vacancy. Surf Sci, 2005, 599: 173–186

    Article  Google Scholar 

  19. Zhang J, Gong X Q, Lu G. Catalytic activities of CeO2 (110)-2×1 reconstructed surface. Surf Sci, 2015, 632: 164–173

    Article  Google Scholar 

  20. Wang L, Wang Y, Zhang Y, et al. Shape dependence of nanoceria on complete catalytic oxidation of o-xylene. Catal Sci Technol, 2016, 6: 4840–4848

    Article  Google Scholar 

  21. Blöchl P E. Projector agmented-wave method. Phys Lett B, 1994, 50: 17953–17979

    Google Scholar 

  22. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  Google Scholar 

  23. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci, 1996, 6: 15–50

    Article  Google Scholar 

  24. Andersson D A, Simak S I, Johansson B, et al. Modeling of CeO2, Ce2O3, and CeO2-x in the LDA+U formalism. Phys Rev B, 2007, 75: 035109

    Article  Google Scholar 

  25. Zhang C, Michaelides A, King D A, et al. Oxygen vacancy clusters on ceria: Decisive role of cerium f electrons. Phys Rev B, 2009, 79: 075433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yu, Y., Zhu, J. et al. Oxygen adatoms and vacancies on the (110) surface of CeO2. Sci. China Technol. Sci. 61, 135–139 (2018). https://doi.org/10.1007/s11431-017-9154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9154-9

Keywords

Navigation