Skip to main content
Log in

Morphology and Activity of Electrolytic Silver Catalyst for Partial Oxidation of Methanol to Formaldehyde Under Different Exposures and Oxidation Reactions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Electrolytic silver particles were studied in relation to its morphology changes under different reactive and non-reactive atmospheres, and its catalytic activity in oxidation of methanol to formaldehyde (MTF), carbon monoxide to carbon dioxide, and hydrogen to water. Scanning electron microscopy and X-ray diffraction (XRD) were applied to analyze structural changes in the silver catalyst after exposure or interaction with nitrogen, oxygen, methanol/water, carbon monoxide and hydrogen, applied either individually or in selected combinations, at temperatures approaching 700 °C. The as-received Ag catalyst consists of agglomerated, faceted, polycrystalline particles. These undergo massive morphological changes during MTF reaction conditions. It was found that Ag catalysts exposed to oxygen-free atmospheres (N2, H2/N2 and CH3OH/H2O/N2) at 650 °C exhibit minimal changes in surface morphology compared to the fresh catalyst, while severe restructuring occurs on the mesoscopic scale under oxygen containing atmospheres (O2/N2, H2/O2/N2 and CO/O2/N2) at elevated temperature. This restructuring renders a smoothened surface with refacetted areas and many pinholes, while a small primary crystallite size (~ 40 nm, XRD) is maintained. Such pinholes are commonly described as a result of sub-surface oxygen/hydrogen/hydroxyl interactions. Here, they are present in all samples exposed to oxygen, indicating that presence of hydrogen is not prerequisite. For the CO and H2 oxidation sub-systems, the initial activity was comparable. But, while the conversion of H2 is preserved during 70 h time on stream, the CO conversion gradually reduces from 70 to 10%. This suggests that the restructuring associated with dissolution of O at high temperature inhibits the CO to CO2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Millar GJ, Collins M (2017) Industrial production of formaldehyde using polycrystalline silver catalyst. Ind Eng Chem Res 56(33):9247–9265

    Article  CAS  Google Scholar 

  2. Reuss G, Disteldorf W, Gamer AO, Hilt A (2000) Formaldehyde. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a11_619

    Article  Google Scholar 

  3. Waterhouse GIN, Bowmaker GA, Metson JB (2004) Influence of catalyst morphology on the performance of electrolytic silver catalysts for the partial oxidation of methanol to formaldehyde. Appl Catal A 266(2):257–273

    Article  CAS  Google Scholar 

  4. Waterhouse GIN, Bowmaker GA, Metson JB (2004) Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst. Appl Catal A 265(1):85–101

    Article  CAS  Google Scholar 

  5. Qian M, Liauw M, Emig G (2003) Formaldehyde synthesis from methanol over silver catalysts. Appl Catal A 238(2):211–222

    Article  CAS  Google Scholar 

  6. Nagy A, Mestl G (1999) High temperature partial oxidation reactions over silver catalysts. Appl Catal A 188(1–2):337–353

    Article  CAS  Google Scholar 

  7. Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R (1998) The dynamic restructuring of electrolytic silver during the formaldehyde synthesis reaction. J Catal 179(2):548–559

    Article  CAS  Google Scholar 

  8. Nagy AJ, Mestl G, Herein D, Weinberg G, Kitzelmann E, Schlögl R (1999) The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver–oxygen system. J Catal 182(2):417–429

    Article  CAS  Google Scholar 

  9. Schubert H, Tegtmeyer U, Schlögl R (1994) On the mechanism of the selective oxidation of methanol over elemental silver. Catal Lett 28(2–4):383–395

    Article  CAS  Google Scholar 

  10. Waterhouse GIN, Bowmaker GA, Metson JB (2003) Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study. Appl Surf Sci 214(1–4):36–51

    Article  CAS  Google Scholar 

  11. Besenbacher F, Nørskov JK (1993) Oxygen chemisorption on metal surfaces: general trends for Cu, Ni and Ag. Prog Surf Sci 44(1):5–66

    Article  CAS  Google Scholar 

  12. Millar GJ, Metson JB, Bowmaker GA, Cooney RP (1995) In situ Raman studies of the selective oxidation of methanol to formaldehyde and ethene to ethylene oxide on a polycrystalline silver catalyst. J Chem Soc Faraday Trans 91(22):4149–4159

    Article  CAS  Google Scholar 

  13. Lefferts L, Van Ommen J, Ross J (1987) The silver-oxygen interaction in relation to oxidative dehydrogenation of methanol. Appl Catal 31(2):291–308

    Article  CAS  Google Scholar 

  14. Wachs IE, Madix R (1978) The oxidation of methanol on a silver (110) catalyst. Surf Sci 76(2):531–558

    Article  CAS  Google Scholar 

  15. Lefferts L, Van Ommen J, Ross J (1987) The influence of hydrogen treatment and catalyst morphology on the interaction of oxygen with a silver catalyst. Appl Catal 34:329–339

    Article  CAS  Google Scholar 

  16. Lefferts L, Van Ommen JG, Ross JRH (1987) An X-ray photoelectron spectroscopy study of the influence of hydrogen on the oxygen–silver interaction. Faraday Trans 1: Phys Chem Condens Phases 83 (10):3161–3165

    Article  CAS  Google Scholar 

  17. Bao X, Barth J, Lehmpfuhl G, Schuster R, Uchida Y, Schlögl R, Ertl G (1993) Oxygen-induced restructuring of Ag (111). Surf Sci 284(1–2):14–22

    Article  CAS  Google Scholar 

  18. van Veen AC, Hinrichsen O, Muhler M (2002) Mechanistic studies on the oxidative dehydrogenation of methanol over polycrystalline silver using the temporal-analysis-of-products approach. J Catal 210(1):53–66

    Article  CAS  Google Scholar 

  19. Bao X, Muhler M, Pettinger B, Uchida Y, Lehmpfuhl G, Schlögl R, Ertl G (1995) The effect of water on the formation of strongly bound oxygen on silver surfaces. Catal Lett 32(1–2):171–183

    Article  CAS  Google Scholar 

  20. Bao X, Deng J (1986) The oxidation of methanol on electrolytic silver catalyst. J Catal 99(2):391–399

    Article  Google Scholar 

  21. Andreasen A, Lynggaard H, Stegelmann C, Stoltze P (2005) Simplified kinetic models of methanol oxidation on silver. Appl Catal A 289(2):267–273

    Article  CAS  Google Scholar 

  22. Aljama H, Yoo JS, Nørskov JK, Abild-Pedersen F, Studt F (2016) Methanol partial oxidation on Ag (1 1 1) from first principles. ChemCatChem 8(23):3621–3625

    Article  CAS  Google Scholar 

  23. Rehren C, Muhler M, Bao X, Schlögl R, Ertl G (1991) The interaction of silver with oxygen. Zeitschrift für Physikalische Chemie 174(1):11–52

    Article  CAS  Google Scholar 

  24. Mullin JW (2001) Crystallization. Elsevier, Amsterdam

    Google Scholar 

  25. Millar GJ, Nelson ML, Uwins PJ (1997) In situ imaging of catalytic etching on silver during methanol oxidation conditions by environmental scanning electron microscopy. J Catal 169(1):143–156

    Article  CAS  Google Scholar 

  26. Uwins PJ, Millar GJ, Nelson ML (1997) Dynamic imaging of structural changes in silver catalysts by environmental scanning electron microscopy. Microsc Res Tech 36(5):382–389

    Article  CAS  PubMed  Google Scholar 

  27. Millar GJ, Nelson ML, Uwins PJ (1998) In situ observation of structural changes in polycrystalline silver catalysts by environmental scanning electron microscopy. J Chem Soc Faraday Trans 94(14):2015–2023

    Article  CAS  Google Scholar 

  28. Bao X, Muhler M, Pettinger B, Schlögl R, Ertl G (1993) On the nature of the active state of silver during catalytic oxidation of methanol. Catal Lett 22(3):215–225

    Article  CAS  Google Scholar 

  29. Herein D, Nagy A, Schubert H, Weinberg G, Kitzelmann E, Schlögl R (1996) The reaction of molecular oxygen with silver at technical catalytic conditions: bulk structural consequences of a gas-solid interface reaction. Zeitschrift für Physikalische Chemie 197(1–2):67–96

    Article  CAS  Google Scholar 

  30. Schubert H, Tegtmeyer U, Herein D, Bao X, Muhler M, Schlögl R (1995) On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol. Catal Lett 33(3–4):305–319

    Article  CAS  Google Scholar 

  31. Eichenauer W, Miller G (1985) Diffusion and solubility of oxygen in silver. National Aeronautics and Space Administration, Washington, D.C.

    Google Scholar 

  32. Outlaw R, Wu D, Davidson M, Hoflund GB (1992) Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr. J Vac Sci Technol A 10(4):1497–1502

    Article  CAS  Google Scholar 

  33. Hoffman R, Turnbull D (1951) Lattice and grain boundary self-diffusion in silver. J Appl Phys 22(5):634–639

    Article  CAS  Google Scholar 

  34. Bao X, Lehmpfuhl G, Weinberg G, Schlögl R, Ertl G (1992) Variation of the morphology of silver surfaces by thermal and catalytic etching. J Chem Soc 88(6):865–872

    CAS  Google Scholar 

  35. Woodruff DP, Delchar TA (1986) Modern techniques of surface science. Cambridge solid science series. Cambridge University Press, Cambridge

    Google Scholar 

  36. Taylor CE, Garvey SD, Pemberton JE (1996) Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy. Anal Chem 68(14):2401–2408

    Article  CAS  Google Scholar 

  37. Yanase A, Komiyama H, Tanaka K (1990) Adsorbate-induced lattice relaxation of small supported silver particles observed by an in situ X-ray diffraction technique. Surf Sci 226(1–2):L65–L69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with Terje Pedersen at K.A. Rasmussen AS. This publication forms a part of the iCSI (industrial Catalysis Science and Innovation) Centre for Research-based Innovation, which receives financial support from the Research Council of Norway under Contract No. 237922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Venvik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 172 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lervold, S., Arnesen, K., Beck, N. et al. Morphology and Activity of Electrolytic Silver Catalyst for Partial Oxidation of Methanol to Formaldehyde Under Different Exposures and Oxidation Reactions. Top Catal 62, 699–711 (2019). https://doi.org/10.1007/s11244-019-01159-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01159-0

Keywords

Navigation