The Effect of Polarization and Reaction Mixture on the Rh/YSZ Oxidation State During Ethylene Oxidation Studied by Near Ambient Pressure XPS


In this study, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is applied to investigate an electrochemical cell consisting of a rhodium thin film catalyst supported on an yttria-stabilized zirconia (YSZ) solid electrolyte under various ethylene-oxygen reaction mixtures. The aim of the study is twofold: first to show how the surface oxidation state of the Rh catalyst is correlated with the reactants feed composition and the temperature, and second, to reveal the effect of the anodic polarization on the stability of Rh oxides and the implications on the electrochemical promotion of catalysis. It is clearly shown that even under reducing conditions part of the Rh electrode remains oxidized at temperatures up to 250 °C. Reduction of the oxide can take place by increasing the temperature under C2H4 excess, something which is not happening under oxidizing reaction mixtures. Moreover, anodic polarization, i.e. oxygen ion supply to the surface, facilitates reduction of oxidized Rh electrodes over a broad range of ethylene–oxygen reaction mixtures. Remarkably, under mildly reducing conditions a stable ultrathin Rh surface oxide film forms over metallic Rh. This surface Rh oxide film (RhOx) is associated to higher cell currents, counterintuitive to the case of bulk Rh oxides (Rh2O3).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Ladas S, Kennou S, Bebelis S, Vayenas CG (1993) Origin of non-faradaic electrochemical modification of catalytic activity. J Phys Chem 97:8845–8848.

    CAS  Article  Google Scholar 

  2. 2.

    Vayenas CG (2013) Promotion, electrochemical promotion and metal-support interactions: their common features. Catal Lett 143:1085–1097.

    CAS  Article  Google Scholar 

  3. 3.

    Vayenas CG, Bebelis S, Pliangos C et al (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion, and metal-support interactions.

  4. 4.

    Vayenas CG, Koutsodontis CG (2008) Non-faradaic electrochemical activation of catalysis. J Chem Phys.

    Article  PubMed  Google Scholar 

  5. 5.

    Katsaounis A (2010) Recent developments and trends in the electrochemical promotion of catalysis (EPOC). J Appl Electrochem 40(5):885–902

    CAS  Article  Google Scholar 

  6. 6.

    Vayenas CG (2011) Bridging electrochemistry and heterogeneous catalysis. J Solid State Electrochem 15:1425–1435.

    CAS  Article  Google Scholar 

  7. 7.

    Tsiplakides D, Balomenou S (2009) Milestones and perspectives in electrochemically promoted catalysis. Catal Today 146:312–318.

    CAS  Article  Google Scholar 

  8. 8.

    Vernoux P, Lizarraga L, Tsampas MN et al (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Van Herle J, McEvoy a J (1994) Oxygen diffusion through silver cathodes for solid oxide fuel cells. J Phys Chem Solids 55:339–347.

    Article  Google Scholar 

  10. 10.

    Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Fleig J, Jamnik J (2005) Work function changes of polarized electrodes on solid electrolytes. J Electrochem Soc 152:E138.

    CAS  Article  Google Scholar 

  12. 12.

    Baranova EA, Thursfield A, Brosda S et al (2005) Electrochemically induced oscillations of C2H4 oxidation over thin sputtered Rh catalyst films. Catal Lett 105:15–21.

    CAS  Article  Google Scholar 

  13. 13.

    Baranova EA, Thursfield A, Brosda S et al (2005) Electrochemical promotion of ethylene oxidation over Rh catalyst thin films sputtered on YSZ and TiO2/YSZ supports. J Electrochem Soc 152:E40–E49.

    CAS  Article  Google Scholar 

  14. 14.

    Brosda S, Badas T, Vayenas CG (2011) Study of the mechanism of the electrochemical promotion of Rh/YSZ catalysts for C2H4 oxidation via AC impedance spectroscopy. Top Catal 54:708–717.

    CAS  Article  Google Scholar 

  15. 15.

    De Lucas-Consuegra A, González-Cobos J, Carcelén V et al (2013) Electrochemical promotion of Pt nanoparticles dispersed on a diamond-like carbon matrix: a novel electrocatalytic system for H2 production. J Catal 307:18–26.

    CAS  Article  Google Scholar 

  16. 16.

    Fortunato MA, Princivalle A, Capdeillayre C et al (2014) Role of lattice oxygen in the propane combustion over Pt/Yttria-stabilized zirconia: isotopic studies. Top Catal 57:1277–1286.

    CAS  Article  Google Scholar 

  17. 17.

    Hajar YM, Patel KD, Tariq U, Baranova EA (2017) Functional equivalence of electrochemical promotion and metal support interaction for Pt and RuO2 nanoparticles. J Catal 352:42–51.

    CAS  Article  Google Scholar 

  18. 18.

    Vayenas CG, Bebelis S, Ladas S (1990) Dependence of catalytic rates on catalyst work function. Nature 343:625–627.

    CAS  Article  Google Scholar 

  19. 19.

    Pliangos C, Yentekakis IV, Verykios XE, Vayenas CG (1995) Non-faradaic electrochemical modification of catalytic activity. 8. Rh-catalyzed C2H4 oxidation. J Catal 154:124–136.

    CAS  Article  Google Scholar 

  20. 20.

    Pliangos C, Yentekakis IV, Papadakis VG et al (1997) Support-induced promotional effects on the activity of automotive exhaust catalysts: 1. The case of oxidation of light hydrocarbons (C2H4). Appl Catal B Environ 14:161–173.

    CAS  Article  Google Scholar 

  21. 21.

    Neophytides SGG, Zafeiratos S, Kennou S (2000) XPS characterization of the electrochemically generated O species on a Au electrode evaporated on Y2O3-stabilized ZrO2 (100). Solid State Ionics 136:801–806.

    Article  Google Scholar 

  22. 22.

    Stoerzinger KA, Hong WT, Crumlin EJ et al (2015) Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc Chem Res 48:2976–2983.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Paloukis F, Papazisi KM, Balomenou SP et al (2017) In situ X-ray photoelectron spectroscopy study of complex oxides under gas and vacuum environments. Appl Surf Sci 423:1176–1181.

    CAS  Article  Google Scholar 

  24. 24.

    Toghan A, Arrigo R, Knop-Gericke A, Imbihl R (2012) Ambient pressure X-ray photoelectron spectroscopy during electrochemical promotion of ethylene oxidation over a bimetallic Pt-Ag/YSZ catalyst. J Catal 296:99–109.

    CAS  Article  Google Scholar 

  25. 25.

    Carberry JJ (1976) Chemical and catalytic reaction engineering. McGraw-Hill, New York

    Google Scholar 

  26. 26.

    Knop-Gericke A, Kleimenov E, Hävecker M et al (2009) X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal 52:213–272.

    CAS  Article  Google Scholar 

  27. 27.

    Papaefthimiou V, Shishkin M, Niakolas DK et al (2013) On the active surface state of nickel-ceria solid oxide fuel cell anodes during methane electrooxidation. Adv Energy Mater 3:762–769.

    CAS  Article  Google Scholar 

  28. 28.

    Papaefthimiou V, Niakolas DK, Paloukis F et al (2017) Operando observation of nickel/ceria electrode surfaces during intermediate temperature steam electrolysis. J Catal 352:305–313.

    CAS  Article  Google Scholar 

  29. 29.

    Tanuma S, Powell CJ, Penn DR (1993) Calculations of electron inelastic mean free paths. Surf Interface Anal 21:165–176.

    Article  Google Scholar 

  30. 30.

    Yeh JJ, Lindau I (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 < Z < 103. At Data Nucl Data Tables 32:1–155.

    CAS  Article  Google Scholar 

  31. 31.

    Powell CJJ, Jablonski A (2010) Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: current status and perspectives. J Electron Spectros Relat Phenom 178:331–346.

    CAS  Article  Google Scholar 

  32. 32.

    Blomberg S, Lundgren E, Westerström R et al (2012) Structure of the Rh2O3(0001) surface. Surf Sci 606:1416–1421.

    CAS  Article  Google Scholar 

  33. 33.

    Blomberg S, Westerström R, Martin NM et al (2014) A high pressure X-ray photoelectron spectroscopy study of oxidation and reduction of Rh(100) and Rh nanoparticles. Surf Sci 628:153–158.

    CAS  Article  Google Scholar 

  34. 34.

    Kibis LS, Stadnichenko AI, Koscheev SV et al (2016) XPS study of nanostructured rhodium oxide film comprising Rh4+ species. J Phys Chem C 120:19142–19150.

    CAS  Article  Google Scholar 

  35. 35.

    Grass ME, Zhang Y, Butcher DR et al (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47:8893–8896.

    CAS  Article  Google Scholar 

  36. 36.

    Dri C, Africh C, Esch F et al (2006) Initial oxidation of the Rh(110) surface: ordered adsorption and surface oxide structures. J Chem Phys.

    Article  PubMed  Google Scholar 

  37. 37.

    Marot L, Mathys D, Temmerman G, De Oelhafen P (2008) Characterization of sub-stoichiometric rhodium oxide deposited by magnetron sputtering. Surf Sci 602:3375–3380.

    CAS  Article  Google Scholar 

  38. 38.

    Paloukis F, Papazisi KM, Dintzer T et al (2017) Insights into the surface reactivity of Cermet and Perovskite electrodes in oxidizing, reducing, and humid environments. ACS Appl Mater Interfaces 9:25265–25277.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Parmigiani F, Depero LE, Sangaletti L, Samoggia G (1993) An XPS study of yttria-stabilised zirconia single crystals. J Electron Spectros Relat Phenomena 63:1–10.

    CAS  Article  Google Scholar 

  40. 40.

    Gustafson J, Mikkelsen A, Borg M et al (2004) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92126101–126102.

    CAS  Article  Google Scholar 

  41. 41.

    Doh WHWH, Papaefthimiou V, Dintzer T et al (2014) Synchrotron radiation X-ray photoelectron spectroscopy as a tool to resolve the dimensions of spherical core/shell nanoparticles. J Phys Chem C 118:26621–26628.

    CAS  Article  Google Scholar 

  42. 42.

    Mittendorfer F (2010) Low-dimensional surface oxides in the oxidation of Rh particles. J Phys Condens Matter 22:393001.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and metal-support interactions: 2. CO oxidation by 18O2 on electropromoted Pt films deposited on YSZ and on nanodispersed Pt/YSZ catalysts. J Catal 226:197–209.

    CAS  Article  Google Scholar 

  44. 44.

    Vayenas CG, Bebelis S, Yentekakis IV, Lintz HG (1992) Non-faradaic electrochemical modification of catalytic activity: a status report. Catal Today 11:303–438.

    CAS  Article  Google Scholar 

  45. 45.

    Assmann J, Crihan D, Knapp M et al (2005) Understanding the structural deactivation of ruthenium catalysts on an atomic scale under both oxidizing and reducing conditions. Angew Chem Int Ed 44:917–920.

    CAS  Article  Google Scholar 

  46. 46.

    Hendriksen BLM, Frenken JWM (2002) CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys Rev Lett.

    Article  PubMed  Google Scholar 

  47. 47.

    Danilovic N, Subbaraman R, Chang KC et al (2014) Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed 53:14016–14021.

    CAS  Article  Google Scholar 

  48. 48.

    Saveleva VA, Wang L, Luo W et al (2016) Uncovering the stabilization mechanism in bimetallic ruthenium-iridium anodes for proton exchange membrane electrolyzers. J Phys Chem Lett 7:3240–3245.

    CAS  Article  PubMed  Google Scholar 

Download references


We thank AC department of FHI and in particular M. Hävecker and A. Knop-Gericke for the opportunity to use the ISISS beamline and HZB for the allocation of synchrotron radiation beamtime. We acknowledge the support of Dr. T. Dintzer for the SEM images and Dr. Y.T. Law during the beamtime measurements.

Author information



Corresponding author

Correspondence to S. Zafeiratos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katsaounis, A., Teschner, D. & Zafeiratos, S. The Effect of Polarization and Reaction Mixture on the Rh/YSZ Oxidation State During Ethylene Oxidation Studied by Near Ambient Pressure XPS. Top Catal 61, 2142–2151 (2018).

Download citation


  • Electrochemical promotion of catalysis (EPOC)
  • Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS)
  • Rh oxide
  • Ethylene oxidation