Skip to main content
Log in

Surface Segregation in Au–Ag Alloys Investigated by Atom Probe Tomography

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Bimetallic alloys are increasingly used in heterogeneous catalysis because the synergistic effects between the two metals may create more efficient catalysts. As an example, a dilute amount of Ag within an Au catalyst allows to obtain a low temperature activity together with a large selectivity for selective oxidation reactions. In this context, we present a systematic study of segregations occurring on Au-8.8 at.% Ag samples by atom probe tomography (APT). The samples are prepared as sharp tips representing a single nanoparticle of catalyst. The segregation behaviours are studied by exposing the catalyst to unreactive (Ar), oxidative (O2 and N2O) and reductive (H2) atmospheres at different temperature (323, 373 and 473 K). With a dedicated reaction-cell mounted on the APT system, the exposure conditions are close to the operating conditions of applied formulations of the catalyst. The segregation lead to important surface composition changes, e.g. from Au91.2–Ag8.8 to Ag84–Au16. The obtained results highlight the presence of different Ag segregation behaviours due to surface diffusion after O2 exposure, and due to bulk diffusion after N2O exposure: the different dissociation properties of these two gases explain the different segregation behaviour. Gold segregation was also identified after sample treatments in H2 gas. These results are promising for the engineering of catalysts since it would be possible to design the surface composition by applying different treatments to the sample, therefore allowing a better control on the activity and selectivity of such designed catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ponec V (2001) Alloy catalysts: the concepts. Appl Catal A 222:31–45

    Article  CAS  Google Scholar 

  2. Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810–815

    Article  CAS  PubMed  Google Scholar 

  3. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  CAS  PubMed  Google Scholar 

  4. Xu J, Ouyang L, Da GJ et al (2012) Pt Promotional effects on Pd-Pt alloy catalysts for hydrogen peroxide synthesis directly from hydrogen and oxygen. J Catal 285:74–82

    Article  CAS  Google Scholar 

  5. Peng L, Ringe E, Van Duyne RP et al (2015) Segregation in bimetallic nanoparticles. Phys Chem Chem Phys 17:27940–27951

    Article  CAS  PubMed  Google Scholar 

  6. Barroo C, Bagot PAJ, Smith GDW, Visart de Bocarmé T (2015) Investigating nano-structured catalysts at the atomic scale by field ion microscopy and atom probe tomography. In: Hermans S, de Bocarmé TV (eds) Atomically-precise methods for synthesis of solid catalysts. RSC catalysis series. The Royal Society of Chemistry, London, pp 248–295

    Google Scholar 

  7. Zafeiratos S, Piccinin S, Teschner D (2012) Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment. Catal Sci Technol 2:1721–1996

    Article  CAS  Google Scholar 

  8. Baraldi A, Giacomello D, Rumiz L et al (2005) Unexpected behavior of the surface composition of PtRh alloys during chemical reaction. J Am Chem Soc 127:5671–5674

    Article  CAS  PubMed  Google Scholar 

  9. Slater TJA, Macedo A, Schroeder SLM et al (2014) Correlating catalytic activity of Ag-Au nanoparticles with 3D compositional variations. Nano Lett 14:1921–1926

    Article  CAS  PubMed  Google Scholar 

  10. Arve K, Adam J, Simakova O et al (2009) Selective catalytic reduction of NOx over nano-sized gold catalysts supported on alumina and titania and over bimetallic gold-silver catalysts supported on alumina. Top Catal 52:1762–1765

    Article  CAS  Google Scholar 

  11. More PM, Nguyen DL, Granger P et al (2015) Activation by pretreatment of Ag–Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust. Appl Catal B 174–175:145–156

    Article  CAS  Google Scholar 

  12. Yen C-W, Lin M-L, Wang A et al (2009) CO oxidation catalyzed by Au–Ag bimetallic nanoparticles supported in mesoporous silica. J Phys Chem C 113:17831–17839

    Article  CAS  Google Scholar 

  13. Déronzier T, Morfin F, Lomello M, Rousset JL (2014) Catalysis on nanoporous gold-silver systems: synergistic effects toward oxidation reactions and influence of the surface composition. J Catal 311:221–229

    Article  CAS  Google Scholar 

  14. Wongnongwa Y, Namuangruk S, Kungwan N, Jungsuttiwong S (2017) Mechanistic study of CO oxidation by N2O over Ag7Au6 cluster investigated by DFT methods. Appl Catal A 538:99–106

    Article  CAS  Google Scholar 

  15. Sandoval A, Aguilar A, Louis C et al (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: high activity and stability in CO oxidation. J Catal 281:40–49

    Article  CAS  Google Scholar 

  16. Fujita T, Guan P, McKenna K et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11:775–780

    Article  CAS  PubMed  Google Scholar 

  17. Wittstock A, Zielasek V, Biener J et al (2010) Nanoporous gold catalysts for selective methanol at low temperature. Science 80-:327:319–322

    Article  CAS  Google Scholar 

  18. Wittstock A, Neumann B, Schaefer A et al (2009) Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113:5593–5600

    Article  CAS  Google Scholar 

  19. Takale BS, Feng X, Lu Y et al (2016) Unsupported nanoporous gold catalyst for chemoselective hydrogenation reactions under low pressure: effect of residual silver on the reaction. J Am Chem Soc 138:10356–10364

    Article  CAS  PubMed  Google Scholar 

  20. Guisbiers G, Mendoza-Cruz R, Bazán-Díaz L et al (2016) Electrum, the gold-silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10:188–198

    Article  CAS  PubMed  Google Scholar 

  21. Gong HR (2010) Electronic structures and related properties of Ag-Au bulks and surfaces. Mater Chem Phys 123:326–330

    Article  CAS  Google Scholar 

  22. Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. https://doi.org/10.1007/3-540-30437-1

  23. Burton JJ, Machlin ES (1976) Prediction of surface segregation to alloy surfaces from bulk phase diagrams. Phys Rev B 37:1433–1436

    CAS  Google Scholar 

  24. King TS, Donnelly RG (1985) Surface compositions and composition profiles of Ag-Au (100), (110), and (111) surfaces determined quantitatively by auger electron spectroscopy. Surf Sci 151:374–399

    Article  CAS  Google Scholar 

  25. Wang H, Najafabadi R, Srolovitz D, Lesar R (1993) Interfacial segregation in Ag-Au, Au-Pd, and Cu-Ni Alloys: I. (100) surfaces. Interface Sci 1:7–30

    CAS  Google Scholar 

  26. Bozzolo G, Garcés JE, Derry GN (2007) Atomistic modeling of segregation and bulk ordering in Ag-Au Alloys. Surf Sci 601:2038–2046

    Article  CAS  Google Scholar 

  27. Barroo C, Montemore MM, Janvelyan N et al (2017) Macroscopic 3D nanoporosity formation by dry oxidation of AgAu Alloys. J Phys Chem C 121:5115–5122

    Article  CAS  Google Scholar 

  28. Moskaleva LV, Weiss T, Klüner T, Bäumer M (2015) Chemisorbed oxygen on the Au(321) surface alloyed with silver: a first-principles investigation. J Phys Chem C 119:9215–9226

    Article  CAS  Google Scholar 

  29. Barroo C, Janvelyan N, Zugic B et al (2017) Surface modifications during a catalytic reaction: a combined APT and FIB/SEM analysis of surface segregation. Microsc Microanal 22:356–357

    Article  Google Scholar 

  30. Zugic B, Karakalos S, Stowers KJ et al (2016) Continuous catalytic production of methyl acrylates from unsaturated alcohols by gold: the strong effect of CC unsaturation on reaction selectivity. ACS Catal 6:1833–1839

    Article  CAS  Google Scholar 

  31. Iizuka Y, Hiragi Y, Yakushiji H, Miura T (2016) An examination of active sites on Au-Ag bimetallic catalysts based on CO oxidation over Au/Ag2O and a comparison to Ag-contaminated Au powder. Chin J Catal 37:1712–1720

    Article  CAS  Google Scholar 

  32. Barroo C, Jacobs L, Gilis N et al (2017) Field emission microscopy to study the catalytic reactivity of binary alloys at the nanoscale. Microsc Microanal 23:610–611

    Article  Google Scholar 

  33. Montemore MM, Montessori A, Succi S et al (2017) Effect of nanoscale flows on the surface structure of nanoporous catalysts. J Chem Phys 146:214703 1–8

    Article  CAS  Google Scholar 

  34. Cerezo A, Godfrey TJ, Smith GDW (1988) Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59:862–866

    Article  Google Scholar 

  35. Miller MK (2000) Atom probe tomography: analysis at the atomic level. Plenum Publishers, New York

    Book  Google Scholar 

  36. Tsong TT (1978) Evaporation fields. Surf Sci 70:211–233

    Article  CAS  Google Scholar 

  37. Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom probe microscopy. Springer, New York. https://doi.org/10.1007/978-3-642-58562-3

    Book  Google Scholar 

  38. Bagot PAJ, Visart de Bocarmé T, Cerezo A, Smith GDW (2006) 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces i: instrumentation. Surf Sci 600:3028–3035

    Article  CAS  Google Scholar 

  39. Visart de Bocarmé T, Moors M, Kruse N et al (2009) Surface segregation of Au-Pd alloys in UHV and reactive environments: quantification by a catalytic atom probe. Ultramicroscopy 109:619–624

    Article  CAS  PubMed  Google Scholar 

  40. Morita M, Karasawa M, Asaka T, Owari M (2014) The Analysis of metal catalyst nanoparticle by atom probe tomography. e-J Surf Sci Nanotechnol 12:145–148

    Article  CAS  Google Scholar 

  41. Barroo C, Magyar AP, Bell DC (2015) Catalysis and atom probe tomography: recent progresses and future developments towards the analysis of nanoporous samples. Microsc Microanal 21:855–856

    Article  Google Scholar 

  42. Barroo C, Moors M, Visart de Bocarmé T (2017) Imaging and chemical probing catalytic processes using field emission techniques: a study of NO hydrogenation on Pd and Pd–Au catalysts. Catal Sci Technol 7:5249–5256

    Article  CAS  Google Scholar 

  43. Barroo C, Gilis N, Lambeets SV et al (2014) Oxygen assisted reconstructions of rhodium and platinum nanocrystals and their effects on local catalytic activity of hydrogenation reactions. Appl Surf Sci 304:2–10

    Article  CAS  Google Scholar 

  44. Personick ML, Zugic B, Biener MM et al (2015) Ozone-activated nanoporous gold: a stable and storable material for catalytic oxidation. ACS Catal 5:4237–4241

    Article  CAS  Google Scholar 

  45. Wang L-C, Stowers KJ, Zugic B et al (2015) Exploiting basic principles to control the selectivity of the vapor phase catalytic oxidative cross-coupling of primary alcohols over nanoporous gold catalysts. J Catal 329:78–86

    Article  CAS  Google Scholar 

  46. Smithells CJ, Brandes EA (1977) Metals reference book, 5th edn. Butterworth, London

    Google Scholar 

  47. Yabumoto M, Watanabe K, Yamashina T (1978) An AES study of surface segregation of Ag-Au alloys with ion bombardment and annealing. Surf Sci 77:615–625

    Article  CAS  Google Scholar 

  48. Visart de Bocarmé T, Chau TD, Tielens F et al (2006) Oxygen adsorption on gold nanofacets and model clusters. J Chem Phys 125:1–7

    Google Scholar 

  49. Tan SA, Grant RB, Lambert RM (1987) The silver catalysed decomposition of N2O and the catalytic oxidation of ethylene by N2O over Ag(111) and Agalpha-Al2O3. J Catal 104:156–163

    Article  CAS  Google Scholar 

  50. Scholten JJF, Konvalinka JA, Beekman FW (1973) Reaction of nitrous oxide and oxygen with silver surfaces, and application to the determination of free-silver surface areas of catalysts. J Catal 28:209–220

    Article  CAS  Google Scholar 

  51. Angelidis TN, Tzitzios V (2003) Promotion of the catalytic activity of a Ag/Al2O3 catalyst for the N2O+CO reaction by the addition of Rh a comparative activity tests and kinetic study. Appl Catal B 41:357–370

    Article  CAS  Google Scholar 

  52. Tzitzios VK, Georgakilas V (2005) Catalytic reduction of N2O over Ag–Pd/Al2O3 bimetallic catalysts. Chemosphere 59:887–891

    Article  CAS  PubMed  Google Scholar 

  53. Bagot PAJ, Cerezo A, Smith GDW (2008) 3D atom probe study of gaseous adsorption on alloy catalyst surfaces III: ternary alloys—NO on Pt-Rh-Ru and Pt-Rh-Ir. Surf Sci 602:1381–1391

    Article  CAS  Google Scholar 

  54. Li T, Bagot PAJ, Marquis EA et al (2012) Characterization of oxidation and reduction of Pt-Ru and Pt-Rh-Ru alloys by atom probe tomography and comparison with Pt-Rh. J Phys Chem C 116:17633–17640

    Article  CAS  Google Scholar 

  55. Li T, Bagot PAJ, Marquis EA et al (2013) Atomic engineering of platinum alloy surfaces. Ultramicroscopy 132:205–211

    Article  CAS  PubMed  Google Scholar 

  56. Gluhoi AC, Dekkers MAP, Nieuwenhuys BE (2003) Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides. J Catal 219:197–205

    Article  CAS  Google Scholar 

  57. Zeiarnik AV (2003) Adsorption and reactions of N2O on transition metal surfaces. Kinet Catal 44:250–265

    Google Scholar 

  58. Jacobs L, Barroo C, Gilis N et al (2018) Structure reactivity relationships during N2O hydrogenation over Au-Ag alloys: a study by field emission techniques. Appl Surf Sci 435:914–919

    Article  CAS  Google Scholar 

  59. Wang L-C, Personick ML, Karakalos S et al (2016) Active sites for methanol partial oxidation on nanoporous gold catalysts. J Catal 344:778–783

    Article  CAS  Google Scholar 

  60. Deng X, Min BK, Guloy A, Friend CM (2005) Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: implications for oxidation catalysis. J Am Chem Soc 127:9267–9270

    Article  CAS  PubMed  Google Scholar 

  61. Tielens F, Andrés J, Chau TD et al (2006) Molecular oxygen adsorption on electropositive nano gold tips. Chem Phys Lett 421:433–438

    Article  CAS  Google Scholar 

  62. Liu X, Li Y, Lee JW et al (2012) Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au-Ag bimetallic catalyst. Appl Catal A 439–440:8–14

    Article  CAS  Google Scholar 

  63. Okada M, Nakamura M, Moritani K, Kasai T (2003) Dissociative adsorption of hydrogen on thin Au films grown on Ir {111}. Surf Sci 523:218–230

    Article  CAS  Google Scholar 

  64. Gatin AK, Grishin MV, Gurevich SA et al (2014) Interaction of hydrogen and oxygen on the surface of individual gold nanoparticles. Russ Chem Bull Int Ed 63:1696–1702

    Article  CAS  Google Scholar 

  65. Corma A, Boronat M, González S, Illas F (2007) On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites. Chem Commun 32:3371–3373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.J. and C.B. thank the Fonds de la Recherche Scientifique (F.R.S.-FNRS) for financial support: PhD Grant from FRIA (L.J.) and postdoctoral fellowship from FNRS (C.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Visart de Bocarmé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilis, N., Jacobs, L., Barroo, C. et al. Surface Segregation in Au–Ag Alloys Investigated by Atom Probe Tomography. Top Catal 61, 1437–1448 (2018). https://doi.org/10.1007/s11244-018-1040-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1040-0

Keywords

Navigation