Skip to main content
Log in

Characterization of CeO2–Fe2O3 Mixed Oxides: Influence of the Dopant on the Structure

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

CeFex (x = 0, 1, 3, 5, 10, 15 and 20 at.%) mixed oxides synthesized by an adapted Pechini method were characterized by Raman spectroscopy, high-resolution transmission electron microscopy, electron paramagnetic resonance, magnetization and 57Fe Mössbauer spectroscopy (57Fe-MS) measurements in order to evaluate the oxygen vacancies formation and the chemical environment of Fe+3 inserted into the CeO2 crystalline lattice. Fe+3 introduction into the CeO2 structure resulted in an increase of the oxygen vacancies concentration, which indicates that this is the predominant charge compensation mechanism in the formation of CeFex solid solutions by the Pechini method. Fe+3 insertion in CeO2 led to the formation of substitutional solid solutions, in which Fe+3 replaced octahedral Ce+4 sites in the crystalline lattice. Fe+3 could be found in the form of isolated sites with orthorhombic distortion or Fe+3 species in pairs or clusters coupled by strong spin–spin interactions. No evidence of Fe+3 insertion into tetrahedral interstitial sites was found. Isolated Fe+3 species showed a less distorted chemical environment and greater ionic character of the Fe–O bonds than the clusters, being the concentration of both type sites approximately equal for all the Fe+3 doped contents. It was found that pure CeO2 and all the CeFex mixed oxides presented ferromagnetic properties even at room temperature possibly due to their small crystallite size and the presence of oxygen vacancies. At high Fe+3 concentrations (above 10 at.%), probably super-exchange interactions (Fe+3–O−2–Fe+3), with an antiferromagnetic character, also took place, reducing the ferromagnetism of the CeFex mixed oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Trovarelli A (2002) Catalysis by ceria and related materials (1 ed.), Vol. 2, Imperial College Press, London

    Book  Google Scholar 

  2. Aneggi E, Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A (2006) J Alloy Compd 408–412:1096–1102

    Article  CAS  Google Scholar 

  3. Mukherjee D, Rao BG, Reddy BM (2017) Top Catal 60:1673–1681

    Article  CAS  Google Scholar 

  4. Laguna OH, Centeno MA, Boutonnet M, Odriozola JA (2011) Appl Catal B 106:621–629

    Article  CAS  Google Scholar 

  5. Wang J, Zhang B, Shen M, Wang J, Wang W, Ma J, Liu S, Jia L (2011) J Sol-Gel Sci Technol 58:259–268

    Article  CAS  Google Scholar 

  6. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353–367

    Article  CAS  Google Scholar 

  7. Yao X, Tang C, Ji Z, Dai Y, Cao Y, Gao F, Dong L, Chen Y (2013) Catal Sci Technol 3:688–698

    Article  CAS  Google Scholar 

  8. Wang J, Shen M, Wang J, Cui M, Gao J, Ma J, Liu S (2012) J Environ Sci 24:757–764

    Article  CAS  Google Scholar 

  9. Bao H, Chen X, Fang J, Jiang Z, Huang W (2008) Catal Lett 125:160–167

    Article  CAS  Google Scholar 

  10. Bao H, Qian K, Fang J, Huang W (2017) Appl Surf Sci 414:131–139

    Article  CAS  Google Scholar 

  11. Luo Y, Chen R, Peng W, Tang G, Gao X (2017) Appl Surf Sci 416:911–917

    Article  CAS  Google Scholar 

  12. Qiao D, Lu G, Liu X, Guo Y, Wang Y, Guo Y (2011) J Mater Sci 46:3500–3506

    Article  CAS  Google Scholar 

  13. Li K, Wang H, Wei Y, Liu M (2008) J Rare Earths 26:245–249

    Article  CAS  Google Scholar 

  14. Hong W-J, Ueda M, Iwamoto S, Hosokawa S, Wada K, Kanai H, Deguchi H, Inoue M (2011) Appl Catal B 106:142–148

    CAS  Google Scholar 

  15. Sahoo TR, Armandi M, Arletti R, Piumetti M, Bensaid S, Manzoli M, Panda SR, Bonelli B (2017) Appl Catal B 211:31–45

    Article  CAS  Google Scholar 

  16. Gu Z, Li K, Wang H, Wei Y, Yan D, Qiao T (2013) Kinet Catal 54:326–333

    Article  CAS  Google Scholar 

  17. Wang W, Zhu Q, Qin F, Dai Q, Wang X (2018) Chem Eng J 333:226–239

    Article  CAS  Google Scholar 

  18. Ilieva L, Pantaleo G, Velinov N, Tabakova T, Petrova P, Ivanov I, Avdeev G, Paneva D, Venezia AM (2015) Appl Catal B 174–175:176–184

    Article  CAS  Google Scholar 

  19. Wang Y, Wang F, Chen Y, Zhang D, Li B, Kang S, Li X, Cui L (2014) Appl Catal B 147:602–609

    Article  CAS  Google Scholar 

  20. Brackmann R, Toniolo FS, Schmal M (2016) Top Catal 59:1772–1786

    Article  CAS  Google Scholar 

  21. Lagarec K, Rancourt DG (1997) Nucl Instrum Methods Phys Res Sect B 129:266–280

    Article  CAS  Google Scholar 

  22. Dunlap RA, McGraw JD (2007) J Non-Cryst Solids 353:22–23

    Article  CAS  Google Scholar 

  23. Rossano S, Balan E, Morin G, Bauer J-P, Calas G, Brouder C (1999) Phys Chem Miner 26:530–538

    Article  CAS  Google Scholar 

  24. Dunlap RA, Sibley ADE (2004) J Non-Cryst Solids 337:36–41

    Article  CAS  Google Scholar 

  25. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435–2441

    Article  CAS  Google Scholar 

  26. Shen Q, Lu G, Du C, Guo Y, Wang Y, Guo Y, Gong X (2013) Chem Eng J 218:164–172

    Article  CAS  Google Scholar 

  27. Ilieva L, Pantaleo G, Ivanov I, Venezia AM, Andreeva D (2006) Appl Catal B 65:101–109

    Article  CAS  Google Scholar 

  28. Minervini L, Zacate MO, Grimes RW (1999) Solid State Ionics 116:339–349

    Article  CAS  Google Scholar 

  29. Moog I, Feral-Martin C, Duttine M, Wattiaux A, Prestipino C, Figueroa S, Majimel J, Demourgues A (2014) J Mater Chem A 2:20402–20414

    Article  CAS  Google Scholar 

  30. Zhang Z, Han D, Wei S, Zhang Y (2010) J Catal 276:16–23

    Article  CAS  Google Scholar 

  31. Liang C, Ma Z, Lin H, Ding L, Qiu J, Frandsen W, Su D (2009) J Mater Chem 19:1417–1424

    Article  CAS  Google Scholar 

  32. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89:166601-1–166601-4

    Article  CAS  Google Scholar 

  33. Venkatesan M, Fitzgerald CB, Coey JMD (2004) Nature 430:630

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Lockman Z, Aziz A, MacManus-Driscoll J (2008) J Phys: Condens Matter 20:165201–165205

    Google Scholar 

  35. Sharma SK, Knobel M, Meneses CT, Kumar S, Kim YJ, Koo BH, Lee CG, Shukla DK (2009) J Korean Phys Soc 55:1018–1021

    Article  CAS  Google Scholar 

  36. Paunović N, Dohčević-Mitrović Z, Scurtu R, Aškrabić S, Prekajski M, Matović B, Popović ZV (2012) Nanoscale 4:5469–5476

    Article  CAS  PubMed  Google Scholar 

  37. Radović M, Dohčević-Mitrović Z, Paunović N, Šćepanović M, Matović B, Popović ZV (2009) Acta Phys Pol A 116:84–87

    Article  Google Scholar 

  38. Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Phys Rev B 74:161306-1–161306-4

    Article  CAS  Google Scholar 

  39. Wang W-C, Chen S-Y, Glans P-A, Guo J, Chen R-J, Fong K-W, Chen C-L, Gloter A, Chang C-L, Chan T-S, Chen J-M, Lee J-F, Dong C-L (2013) Phys Chem Chem Phys 15:14701–14707

    Article  CAS  PubMed  Google Scholar 

  40. Coey JMD, Douvalis AP, Fitzgerald CB, Venkatesan M (2004) Appl Phys Lett 84:1332–1334

    Article  CAS  Google Scholar 

  41. Phokha S, Pinitsoontorn S, Maensiri S (2013) Nano-Micro Lett 5:223–233

    Article  CAS  Google Scholar 

  42. Verma KC, Singh J, Ram M, Sharma DK, Sharma A, Kotnala RK (2012) Phys Scr 86:025704–025711

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Foundation for Research Support of the State of Rio de Janeiro (FAPERJ) and the National Counsel of Technological and Scientific Development (CNPq) for financial support (scholarship). We thank Rosa B. Scorzelli for made available the Mössbauer facility at Centro Brasileiro de Pesquisas Físicas (CBPF)—Brazil. The authors also acknowledge Núcleo de Microscopia da COPPE-UFRJ for the use of the facilities.

Funding

Funding was provided by Universidade Federal do Rio de Janeiro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brackmann, R., Toniolo, F.S., dos Santos Filho, E. et al. Characterization of CeO2–Fe2O3 Mixed Oxides: Influence of the Dopant on the Structure. Top Catal 61, 1694–1706 (2018). https://doi.org/10.1007/s11244-018-1031-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1031-1

Keywords

Navigation