Skip to main content
Log in

Composition-Dependent Degradation of Hybrid and Inorganic Lead Perovskites in Ambient Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In recent times, halide perovskites have attracted the attention of the scientific community because of their semiconducting properties, low cost, and easy synthesis methods; characteristics that make them suitable for application as solar cells and in other fields of electronics. However, these materials are subject to significant chemical and structural degradation and performance decrease over time. This degradation remains a critical factor that prevents their widespread use. In the present paper, we investigated the stability of different bromine-based perovskites: hybrid, MAPbBr3 (MA:NH3CH3+) and inorganic, CsPbBr3 and RbPbBr3. The samples were prepared via single-step solution synthesis as thin films on Au/Pd coated glass substrates and the ageing process was carried out in air within a climatic chamber maintained at 50 °C and 75%RH humidity. The structural and chemical evolution of the perovskites was evaluated as a function of the exposure time by means of AFM, and AR-XPS, while their optoelectronic properties were monitored by indirect bandgap measurement. We observed that the inorganic perovskites resulted more stable than mixed organic–inorganic perovskites. Nevertheless, degradation remains present and further studies are necessary if these materials are to be used for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  CAS  PubMed  Google Scholar 

  2. O’Regan B, Gratzel M (1991) A low-cost high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  3. Zhu X (2016) The perovskite fever and beyond. ACC Chem Res 49(3):355–356

    Article  CAS  PubMed  Google Scholar 

  4. Liu X et al (2015) Organic–inorganic halide perovskite based solar cells—revolutionary progress in photovoltaics. Inorg Chem Front 2:315–335

    Article  CAS  Google Scholar 

  5. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 46). Prog Photovol Res Appl 23(7):805–812

    Article  Google Scholar 

  6. Oku T (2015) Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells. In: Kosyachenko LA (ed) Solar cells. IntechOpen. Available from https://www.intechopen.com/books/solar-cells-new-approaches-and-reviews/crystal-structures-of-ch3nh3pbi3-and-related-perovskite-compounds-used-for-solar-cells. Accessed 19 Apr 2018

  7. Chen W et al (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263):944–948

    Article  CAS  PubMed  Google Scholar 

  8. Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842

    Article  CAS  PubMed  Google Scholar 

  9. Park N-G, Grätzel M, Miyasaka T, Zhu K, Emery K (2016) Towards stable and commercially available perovskite solar cells. Nat Energy 1:16152

    Article  CAS  Google Scholar 

  10. Hodes G (2013) Perovskite-based solar cells. Science 342(6156):317–318

    Article  CAS  PubMed  Google Scholar 

  11. Domanski K et al (2016) Not all that glitters is gold: metal migration-induced degradation in perovskite solar cells. ACS Nano 10(6):6306–6314

    Article  CAS  PubMed  Google Scholar 

  12. Xiao Z et al (2016) Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater Sci Eng R Rep 101:1–38

    Article  Google Scholar 

  13. Chen Q et al (2015) Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10(3):355–396

    Article  CAS  Google Scholar 

  14. Lee YH, Luo J, Humphry-Baker R, Gao P, Grätzel M, Nazeeruddin MK (2015) Unraveling the reasons for efficiency loss in perovskite solar cells. Adv Funct Mater 25(25):3925–3933

    Article  CAS  Google Scholar 

  15. Leguy AMA et al (2015) Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem Mater 27(9):3397–3407

    Article  CAS  Google Scholar 

  16. Misra RK et al (2015) Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J Phys Chem Lett 6(3):326–330

    Article  CAS  PubMed  Google Scholar 

  17. Xu T, Chen L, Guo Z, Ma T (2016) Themed issue: physical chemistry of hybrid perovskite solar cells strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys Chem Chem Phys 18(18):27026–27050

    Article  CAS  PubMed  Google Scholar 

  18. Ong KP, Goh TW, Xu Q, Huan A (2015) Structural evolution in methylammonium lead iodide CH3NH3PbI3. J Phys Chem A 119(44):11033–11038

    Article  CAS  PubMed  Google Scholar 

  19. R. Gottesman et al (2015) Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J Phys Chem Lett 6(12):2332–2338

    Article  CAS  PubMed  Google Scholar 

  20. Han Y et al (2015) Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem A 3(15):8139–8147

    Article  CAS  Google Scholar 

  21. Cui J et al (2015) Recent progress in efficient hybrid lead halide perovskite solar cells. Sci Technol Adv Mater 16(3):36004

    Article  CAS  Google Scholar 

  22. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5(12):4709–4714

    Article  Google Scholar 

  23. Smith GC, Seah MP (1990) Standard reference spectra for XPS and AES: their derivation, validation and use. Surf Interface Anal 16(1–12):144–148

    Article  CAS  Google Scholar 

  24. Christians JA, Miranda Herrera PA, Kamat PV (2015) Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc 137:1530–1538

    Article  CAS  PubMed  Google Scholar 

  25. Clegg C, Hill IG (2016) Systematic study on the impact of water on the performance and stability of perovskite solar cells. RSC Adv 6:52448–52458

    Article  CAS  Google Scholar 

  26. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand A 81(1):89–96

    Article  Google Scholar 

  27. Boldish SI, White WB (1998) Optical band gaps of selected ternary sulfide minerals. Am Mineral 83(7–8):865–871

    Article  CAS  Google Scholar 

  28. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637

    Article  CAS  Google Scholar 

  29. Giaccherini A et al (2016) Green synthesis of pyrite nanoparticles for energy conversion and storage: a spectroscopic investigation. Eur J Mineral 28(3):611–618

    Article  CAS  Google Scholar 

  30. Paynter RW, Nolet D (2003) Parametric analysis of the extraction of depth profile information from ARXPS data obtained on a silicon wafer sample. Surf Interface Anal 35:960–967

    Article  CAS  Google Scholar 

  31. Choi J, Zhang J, Liou S-H, Dowben PA, Plummer EW (1999) Surfaces of the perovskite manganites La1−xCaxMnO3. Phys Rev B 59(20):13453

    Article  CAS  Google Scholar 

  32. Guo X, McCleese C, Kolodziej C, Samia ACS, Zhao Y, Burda C (2016) Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. Dalton Trans 45(9):3806–3813

    Article  Google Scholar 

  33. Shahbazi M, Wang H (2016) Progress in research on the stability of organometal perovskite solar cells. Sol Energy 123:74–87

    Article  CAS  Google Scholar 

  34. Huang S et al (2017) Morphology evolution and degradation of CsPbBr3 nanocrystals under blue ligh-emitting diode illumination. ACS Appl Mater Interfaces 9:7249–7258

    Article  CAS  PubMed  Google Scholar 

  35. Chen J et al (2016) Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Sci China Mater 59:719–727

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Project co-financed under Tuscany POR FESR 2014–2020 ((Bando 2) project name: “SpettroX”). N.C. and S.C. acknowledge the financial support provided by Ente Cassa di Risparmio di Firenze (Project 2015.0937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Bardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calisi, N., Caporali, S., Milanesi, A. et al. Composition-Dependent Degradation of Hybrid and Inorganic Lead Perovskites in Ambient Conditions. Top Catal 61, 1201–1208 (2018). https://doi.org/10.1007/s11244-018-0922-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0922-5

Keywords

Navigation