Skip to main content
Log in

Improving ambient stability of BiI3-based perovskites using different phosphoniums as the organic cation

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Perovskites solar cells have reached impressive efficiencies (22%) in recent years. Because certain environmental concerns are raised by the use of lead halides, there is an interest to seek out lead-free alternatives, featuring bismuth or antimony. Alongside, one of the major drawbacks displayed by MAPbI3 is their low stability at ambient conditions. In this work, (RP4)xBiyIz were synthesized, using different types of tetra-alkylphosphoniums (R4PI) were R = ethyl, butyl, hexyl, and octyl, to assess their stability. Afterwards, they were characterized to study their morphology and crystal structure, as well as their optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Efficiency chart NREL, https://www.nrel.gov/pv/assets/images/efficiency-chart.pngpv/assets/images/efficiency-chart.png.

  2. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca: MAPbI3—x Cl x mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013).

    Article  CAS  Google Scholar 

  3. G. Hodes: Perovskite-based solar cells. Science 342, 317 (2013).

    Article  CAS  Google Scholar 

  4. H.J. Snaith: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    Article  CAS  Google Scholar 

  5. T. Song, Q. Chen, H.H.-P. Zhou, C. Jiang, H.-H. Wang, Y. (Michael) Yang, Y. Liu, J. You, Y. Yang, Y. Liu, J. You, Y. (Michael) Yang, Y. Liu, J. You, and Y. Yang: Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3, 9032 (2015).

    Article  CAS  Google Scholar 

  6. X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu, D. Yang, J. Li, Y. Liu, D. Smilgies, R. Li, Z. Yang, T. Niu, X. Wang, A. Amassian, K. Zhao, and S.F. Liu: Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10, 2095 (2017).

    Article  CAS  Google Scholar 

  7. H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, and E.H. Sargent: Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722 (2017).

    Article  CAS  Google Scholar 

  8. Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, and H.J. Snaith: Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 6, 17135 (2017).

    Article  Google Scholar 

  9. D.B. Mitzi: Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. Inorg. Chem. 39, 6107 (2000).

    Article  CAS  Google Scholar 

  10. D.B. Mitzi and P. Brock: Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. Inorg. Chem. 40, 2096 (2001).

    Article  CAS  Google Scholar 

  11. U.H. Hamdeh, R.D. Nelson, B.J. Ryan, U. Bhattacharjee, J.W. Petrich, and M.G. Panthani: Solution-processed BiI3 thin films for photovoltaic applications: improved carrier collection via solvent annealing. Chem. Mater. 28, 6567 (2016).

    Article  CAS  Google Scholar 

  12. R.E. Ramírez and E.M. Sánchez: Molten phosphonium iodides as electrolytes in dye-sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 90, 2384 (2006).

    Article  Google Scholar 

  13. R.E. Del Sesto, C. Corley, A. Robertson, and J.S. Wilkes: Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem. 690, 2536 (2005).

    Article  Google Scholar 

  14. R.E. Ramírez, L.C. Torres-González, and E.M. Sánchez: Electrochemical aspects of asymmetric phosphonium ionic liquids. J. Electrochem. Soc. 154, B229 (2007).

    Article  Google Scholar 

  15. K.J. Fraser and D.R. MacFarlane: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62, 309 (2009).

    Article  CAS  Google Scholar 

  16. R.E. Ramírez-Garcia and E.M. Sánchez-Cervantes: Desarrollo de nuevos electrolitos con potencial uso en celdas solares nanocristalinas. Cien. UANL X, 400 (2007).

    Google Scholar 

  17. R.E. Ramírez, L.C. Torres-González, A. Hernández, A. García, and E.M. Sánchez: Conductivity and viscosity behavior of asymmetric phosphonium iodides. J. Phys. Chem. B 114, 4271 (2010).

    Article  Google Scholar 

  18. A. Banerjee, R. Theron, and R.W.J. Scott: Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis. ChemSusChem 5, 109 (2012).

    Article  CAS  Google Scholar 

  19. M.F. Mostafa, A.S. Atallah, and M. Elessawi: Preparation and characterization of a new series of perovskite-like structures showing evidence of structural transitions: (methyltriphenylphosphonium)2BX4, B = Mn, Co, Cu, and Hg, and X = CI/I. Phase Transit. 64, 215 (1998).

    Article  CAS  Google Scholar 

  20. M.F. Mostafa and A.S. Atallah: Permittivity and ac conductivity study of the layered perovskite [(CH3) (C6H5)3P]2MnCl4 showing evidence of phase transition. Phys. Lett. A 264, 242 (1999).

    Article  CAS  Google Scholar 

  21. M. Schluter, M.L. Cohen, S.E. Kohn, and C.Y. Fong: Electronic structure of BiI3. Phys. Status Solidi B 78, 737 (1976).

    Article  CAS  Google Scholar 

  22. J. Coates: Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 12, 10815 (2000).

    Google Scholar 

  23. Infrared: Interpretation. https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Spectroscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/Infrared%3A_InterpretationCore/Physical_and_Theoretical_Chemistry/Spectroscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/Infrared%3A_Interpretation .

  24. D.A. Skoog, F. James Holler, and T. A. Nieman: Principios de análisis instrumental, 5ta Edición (McGraw Hill, Madrid, 2001), p. 409.

    Google Scholar 

  25. W. Clegg, R.J. Errington, G.A. Fisher, M.E. Green, D.C.R. Hockless, and N.C. Norman: A phosphine complex of bismuth(III): X-ray crystal structure of [PMe3H] [Bi2Br7(PMe3)2]. Chem. Ber. 124, 2457 (1991).

    Article  CAS  Google Scholar 

  26. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, and A. Falcicchio: EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46, 1231 (2013).

    Article  CAS  Google Scholar 

  27. D. Winn and M.F. Doherty: Modeling crystal shapes of organic materials grown from solution. AlChE J. 46, 1348 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received through the projects 256766 CONACYT-SENER and CONACyT-FC-2015-2-1252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. Sanchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Gutierrez, D.F., Garcia-Gutierrez, D.I., González-Quijano, D. et al. Improving ambient stability of BiI3-based perovskites using different phosphoniums as the organic cation. MRS Communications 8, 878–884 (2018). https://doi.org/10.1557/mrc.2018.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.86

Navigation