Skip to main content
Log in

Development of Robust, Scaleable Catalytic Processes through Fundamental Understanding of Reaction Mechanisms

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Homogenous transition metal-catalyzed reactions have become a mainstay in organic synthesis and are frequently employed in the discovery and manufacture of modern pharmaceutical compounds. Due to the complex, multi-variant nature of these transformations, the pharmaceutical industry primarily relies on parallel experimentation, such as high-throughput (HTP) screening and design of experiments approaches, to identify and optimize conditions for metal-mediated reactions. Although useful for rapid reaction development, these methods have limitations and may fail to provide critical data for the successful scale-up and implementation of these complex multi-step processes. Due to these limitations, it may be necessary to also evaluate a fundamental mechanism-focused approach towards reaction development. In this article, we review several important lessons from our laboratories at Bristol-Myers Squibb where a combination of HTP screening and mechanistic understanding revealed new insights into known catalytic transformations and facilitated the development of robust, reliable catalytic processes to support the bulk production of pharmaceutical targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Scheme 4
Fig. 4
Scheme 5
Scheme 6
Fig. 5
Fig. 6
Fig. 7
Scheme 7

Similar content being viewed by others

Notes

  1. In the context of a catalytic reaction in which the base stoichiometry is often two orders of magnitude greater than the catalyst amount, the adventitious water present in the base can be sufficient to promote reduction of the catalyst precursor.

References

  1. Li J, Eastgate MD (2015) Org Biomol Chem 13:7164

    Article  CAS  Google Scholar 

  2. Beletskaya IP, Cheprakov AV (2000)Chem Rev 100:3009

    Article  CAS  Google Scholar 

  3. Suzuki A (2011) Angew Chem Int Ed 50:6722

    Article  CAS  Google Scholar 

  4. Negishi E-I (2011) Angew Chem Int Ed 50:6738

    Article  CAS  Google Scholar 

  5. Negishi E-I (2007) Bull Chem Soc Jpn 80:233

    Article  CAS  Google Scholar 

  6. Negishi E (2002) Handbook of Organopalladium Chemistry for Organic Synthesis. Vol I, II. Wiley, New York

    Book  Google Scholar 

  7. Busacca CA, Fandrick DR, Song JJ, Senanayake CH (2011) Adv Synth Catal 353:1825

    Article  CAS  Google Scholar 

  8. Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA (2016) J Med Chem 59:4385

    Article  CAS  Google Scholar 

  9. Torborg C, Beller M (2009) Adv Synth Catal 351:3027

    Article  CAS  Google Scholar 

  10. Roughley SD, Jordan AM (2011) J Med Chem 54:3451

    Article  CAS  Google Scholar 

  11. Carey JS, Laffan D, Thomson C, Williams MT (2006) Org Biomol Chem 4:2337

    Article  CAS  Google Scholar 

  12. Buitrago Santanilla A, Regalado EL, Pereira T, Shevlin M, Bateman K, Campeau L-C, Schneeweis J, Berritt S, Shi Z-C, Nantermet P, Liu Y, Helmy R, Welch CJ, Vachal P, Davies IW, Cernak T, Dreher SD (2015) Science 347:49

    Article  CAS  Google Scholar 

  13. Murray PM, Tyler, SNG, Moseley JD (2013) Org Process Res Dev 17:40

    Article  CAS  Google Scholar 

  14. Fitzgerald MA, Soltani O, Wei C, Skliar D, Zheng B, Li J, Albrecht J, Schmidt M, Mahoney M, Fox RJ, Tran K, Zhu K, Eastgate MD (2015) J Org Chem 80:6001

    Article  CAS  Google Scholar 

  15. Carole WA, Colacot TJ (2016) Chem Eur J 22:7686

    Article  CAS  Google Scholar 

  16. Thirupathi N, Amoroso D, Bell A, Protasiewicz JD (2007) Organometallics 26:3157

    Article  CAS  Google Scholar 

  17. Wei CS, Davies, GHM, Soltani O, Albrecht J, Gao Q, Pathirana C, Hsiao Y, Tummala S, Eastgate MD (2013) Angew Chem Int Ed 52:5822

    Article  CAS  Google Scholar 

  18. Grushin VV, Alper H (1993) Organometallics 12:1890

    Article  CAS  Google Scholar 

  19. Grushin VV, Bensimon C, Alper H (1994) Inorg Chem 33:4804

    Article  CAS  Google Scholar 

  20. Ioele M, Ortaggi G, Scarsella M, Sleiter G (1991) Polyhedron 10:2475

    Article  CAS  Google Scholar 

  21. Rahaim RJ Jr, Maleczka RE Jr (2002) Tetrahedron Lett 43:8823

    Article  CAS  Google Scholar 

  22. Ramanathan A, Jimenez LS (2010) Synthesis 2010:217

    Article  Google Scholar 

  23. Ji Y, Plata RE, Regens CS, Hay M, Schmidt M, Razler T, Qiu Y, Geng P, Hsiao Y, Rosner T, Eastgate MD, Blackmond DG (2015) J Am Chem Soc 137:13272

    Article  CAS  Google Scholar 

  24. Ozawa F, Kubo A, Hayashi T (1992) Chem Lett 21:2177

    Article  Google Scholar 

  25. Hu J, Hirao H, Li Y, Zhou J (2013) Angew Chem Int Ed 52:8676

    Article  CAS  Google Scholar 

  26. Hu J, Lu Y, Li Y, Zhou J (2013) Chem Commun 49:9425

    Article  CAS  Google Scholar 

  27. Gorelsky SI, Lapointe D, Fagnou K (2008) J Am Chem Soc 130:10848

    Article  CAS  Google Scholar 

  28. Coyle RJ, Slovokhotov YL, Antipin MY, Grushin VV (1998) Polyhedron 17:3059

    Article  CAS  Google Scholar 

  29. Marshall WJ, Grushin VV (2003) Organometallics 22:555

    Article  CAS  Google Scholar 

  30. Brown RG, Davidson JM (1971) J Chem Soc A 1971:1321

    Article  Google Scholar 

  31. Bäckvall JE, Byström SE, Nordberg RE (1984) J Org Chem 49:4619

    Article  Google Scholar 

  32. Aranyos A, Szabo KJ, Bäckvall JE (1998) J Org Chem 63:2523

    Article  CAS  Google Scholar 

  33. Bäckvall JE, Nordberg RE (1981) J Am Chem Soc 103:4959

    Article  Google Scholar 

  34. Eastgate MD, Buono FG (2009) Angew Chem Int Ed 48:5958

    Article  CAS  Google Scholar 

  35. Stephenson TA, Morehouse SM, Powell AR, Heffer JP, Wilkinson G (1965) J Chem Soc 1965:3632

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Hsaio or Martin D. Eastgate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C.S., Simmons, E.M., Hsaio, Y. et al. Development of Robust, Scaleable Catalytic Processes through Fundamental Understanding of Reaction Mechanisms. Top Catal 60, 620–630 (2017). https://doi.org/10.1007/s11244-017-0736-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0736-x

Keywords

Navigation