Skip to main content
Log in

Optimizing Both Catalyst Preparation and Catalytic Behaviour for the Oxidative Dehydrogenation of Ethane of Ni–Sn–O Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Bulk Ni–Sn–O catalysts have been synthesized, tested in the oxidative dehydrogenation of ethane and characterized by several physicochemical techniques. The catalysts have been prepared by evaporation of the corresponding salts using several additives in the synthesis gel, i.e. ammonium hydroxide, nitric acid, glyoxylic acid or oxalic acid, in the synthesis gel. The catalysts were finally calcined at 500 °C in air. Important changes in the catalytic behaviour have been observed depending on the additive. In fact, an important improvement in the catalytic performance is observed especially when some additives, such as glyoxylic or oxalic acid, are used. Thus the productivity to ethylene multiplies by 6 compared to the reference Ni–Sn–O catalyst if appropriate templates are used, and this is the result of an improvement in both the catalytic activity and the selectivity to ethylene. This improved performance has been explained in terms of the decrease of the crystallite size (and the increase in the surface area of catalyst) as well as the modification of the lattice parameter of nickel oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) J Catal 231:159–171

    Article  CAS  Google Scholar 

  2. Heracleous E, Lemonidou AA (2006) J Catal 237:162–174

    Article  CAS  Google Scholar 

  3. Savova B, Loridant S, Filkova D, Millet JMM (2010) Appl Catal A 390:148–157

    Article  CAS  Google Scholar 

  4. Heracleous E, Lemonidou AA (2010) J Catal 270:67–75

    Article  CAS  Google Scholar 

  5. Solsona B, Nieto JML, Concepcion P, Dejoz A, Ivars F, Vazquez MI (2011) J Catal 280:28–39

    Article  CAS  Google Scholar 

  6. Skoufa Z, Heracleous E, Lemonidou AA (2012) Catal Today 192:169–176

    Article  CAS  Google Scholar 

  7. Zhu H, Ould-Chikh S, Anjum DH, Sun M, Biausque G, Basset JM, Caps V (2012) J Catal 285:292–303

    Article  CAS  Google Scholar 

  8. Skoufa Z, Heracleous E, Lemonidou AA (2012) Chem Eng Sci 84:48–56

    Article  CAS  Google Scholar 

  9. Zhu H, Rosenfeld DC, Anjum DH, Caps V, Basset JM (2015) ChemSusChem 8:1254–1263

    Article  CAS  Google Scholar 

  10. Heracleous E, Lemonidou AA (2015) J Catal 322:118–129

    Article  Google Scholar 

  11. Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, Nieto JML (2012) J Catal 295:104–114

    Article  CAS  Google Scholar 

  12. Nieto JML, Solsona B, Grasselli RK, Concepción P (2014) Top Catal 57:1248–1255

    Article  Google Scholar 

  13. Popescu I, Skoufa Z, Heracleous E, Lemonidou AA, Marcu IC (2015) PCCP 17:8138–8147

    Article  CAS  Google Scholar 

  14. Zhang X, Gong Y, Yu G, Xie Y (2002) J Mol Catal A 180:293–298

    Article  CAS  Google Scholar 

  15. Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I-C (2015) Phys Chem Chem Phys 17:8138–8147

    Article  CAS  Google Scholar 

  16. Nakamura KI, Miyake T, Konishi T, Suzuki T (2006) J Mol Catal A 260:144–151

    Article  CAS  Google Scholar 

  17. Solsona B, Dejoz AM, Vazquez MI, Ivars F, Nieto JML (2009) Top Catal 52:751–757

    Article  CAS  Google Scholar 

  18. Bortolozzi JP, Gutierrez LB, Ulla MA (2013) Appl Catal A 452:179–188

    Article  CAS  Google Scholar 

  19. Takeguchi T, Furukawa S, Inoue M (2001) J Catal 202:14–24

    Article  CAS  Google Scholar 

  20. Richardson JT, Turk B, Twigg MV (1996) Appl Catal 148:97–112

    Article  CAS  Google Scholar 

  21. Biju V, Khadar MA (2002) J Nanopart Res 4:247–253

    Article  CAS  Google Scholar 

  22. Van Veenendaal MA, Sawatzky GA (1993) Phys Rev Lett 70:2459–2462

    Article  Google Scholar 

  23. Vedrine JC, Hollinger G, Duc TM (1978) J Phys Chem 82:1515–1520

    Article  CAS  Google Scholar 

  24. Salagre P, Fierro JLG, Medina F, Sueiras JE (1996) J Mol Catal A 106:125–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the DGICYT in Spain (CTQ2015-68951-C3-1-R and CTQ2012-37925-C03-2) for financial support. We also thank the University of Valencia and SCSIE-UV for assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Solsona or J. M. López Nieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solsona, B., López Nieto, J.M., Agouram, S. et al. Optimizing Both Catalyst Preparation and Catalytic Behaviour for the Oxidative Dehydrogenation of Ethane of Ni–Sn–O Catalysts. Top Catal 59, 1564–1572 (2016). https://doi.org/10.1007/s11244-016-0674-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0674-z

Keywords

Navigation