Skip to main content
Log in

Mechanistic Studies on the Transition Metal Oxide Catalysed Partial Oxidation of (Meth)Acrolein to the Corresponding Carboxylic Acids

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The partial oxidation of unsaturated aldehydes such as acrolein and methacrolein to the corresponding carboxylic acids is of big importance for the chemical industry. The heart of these production plants is the oxidation catalyst. Acrylic acid is produced via the selective oxidation of acrolein on Mo/V/W mixed oxides with an excellent catalytic performance (S > 90 %, X > 95 %, life time >3 a). Under the same conditions the conversion of methacrolein to methacrylic acid has a poor catalytic performance (S < 35 %, X ≈ 40 %). To this day the reason for this is unclear. Hence, for the partial oxidation of methacrolein a heteropoly acid catalyst is used with a good performance (S ≈ 88 %, X ≈ 62 %), but unfortunately the lifetime is unsatisfactory (<1 a). Therefore, we have studied the gas and surface mechanism of the partial oxidation of acrolein to acrylic acid on mixed oxides with the help of in-situ experiments. The learning outcome of this study will help us to find a rational way to come up with a new catalytic system for the unsatisfactory partial oxidation of methacrolein to methacrylic acid and are summarised in a new extended mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bauer W (2012) Methacrylic acid and derivatives, Ullmann’s encylopedia of industrial chemistry. Electronic Release, Weinheim

  2. Albrecht K (2013) Polymethacrylates, Ullmann’s encyclopedia of industrial chemistry. Electronic Release, Weinheim

  3. Dürr N (2014) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  4. Boehning KH, Duembgen G, Hammon U, Krabetz R, Merger F, Schwarzmann M, Thiessen F, Vogel H (1993) Massen der allgemeinen Formel Mo12PaVbX1cX2dX3eSbfRegShOn, EP0467.144.B1

  5. Arpe H-J, Weissermel K (2010) Industrial organic chemistry. Wiley, Weinheim

  6. Petzold T (2015) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  7. Drochner A, Kampe P, Menning N, Blickhan N, Jekewitz T, Vogel H (2014) Chem Eng Technol 37:398–408

    Article  CAS  Google Scholar 

  8. Endres S (2009) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  9. Jekewitz T (2012) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  10. Böhling R, Drochner A, Fehlings M, Krauß K, Vogel H (2000) Interaction of surface- and bulk-oxygen in Mo/V-mixed oxides during the partial oxidation of an unsaturated Aldehyde: a concentration-programmed-reduction study. In: Avelino Corma, Mendioroz FVMS, José Luis, Fierro G (Eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 1739–1744

  11. Kampe P (2007) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  12. Böhling R, Drochner A, Fehlings M, König D, Vogel H (1999) Chem Ing Tech 71:226–230

    Article  Google Scholar 

  13. Vogel H, Böhling R, Hibst H (1999) Catal Lett 62:71–78

    Article  CAS  Google Scholar 

  14. Fehlings M (2000) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  15. Kunert J (2003) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  16. Ott J (2004) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  17. Jekewitz T, Blickhan N, Endres S, Drochner A, Vogel H (2012) Catal Commun 20:25–28

    Article  CAS  Google Scholar 

  18. Böhling R (1997) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  19. Kampe P, Giebeler L, Samuelis D, Kunert J, Drochner A, Haaß F, Adams AH, Ott J, Endres S, Schimanke G, Buhrmester T, Martin M, Fuess H, Vogel H (2007) Phys Chem Chem Phys 9:3577–3589

    Article  CAS  Google Scholar 

  20. Petzold T, Blickhan N, Drochner A, Vogel H (2014) Chem Cat Chem 6:2053–2058

    CAS  Google Scholar 

  21. Krauss K (2000) PhD-Thesis. TU Darmstadt, Darmstadt

    Google Scholar 

  22. Drochner A, Fehlings M, Krauß K, Vogel H (2000) Chem Eng Technol 23:319–322

    Article  CAS  Google Scholar 

  23. Ruppel W, Wegerle U, Tenten A, Hammon U (1998) Catalytic gas-phase oxidation of acrolein to acrylic acid. US5739391 A

  24. Andrushkevich TV (1993) Catal Rev 35:213–259

    Article  CAS  Google Scholar 

  25. Qiu C, Chen C, Ishikawa S, Murayama T, Ueda W (2014) Top Catal 57:1163–1170

    Article  CAS  Google Scholar 

  26. Endres S, Kampe P, Kunert J, Drochner A, Vogel H (2007) Appl Catal A 325:237–243

    Article  CAS  Google Scholar 

  27. Kunert J, Drochner A, Ott J, Vogel H, Fueß H (2004) Appl Catal A 269:53–61

    Article  CAS  Google Scholar 

  28. Schmitt C, Giebeler L, Schierholz R, Endres S, Fasel C, Vogel H, Fuess H (2007) Z Phys Chem 221:1525–1548

    Article  CAS  Google Scholar 

  29. Tichý J, Švachula J, Machek J, Allachverdova NC (1986) React Kinet Catal Lett 31:159–166

    Article  Google Scholar 

  30. Mestl G, Linsmeier C, Gottschall R, Dieterle M, Find J, Herein D, Jäger J, Uchida Y, Schlögl R (2000) J Mol Catal A Chem 162:463–492

    Article  Google Scholar 

  31. Dieterle M, Mestl G, Jäger J, Uchida Y, Hibst H, Schlögl R (2001) J Mol Catal A Chem 174:169–185

    Article  CAS  Google Scholar 

  32. Ovsitser OY, Uchida Y, Mestl G, Weinberg G, Blume A, Jäger J, Dieterle M, Hibst H, Schlögl R (2002) J Mol Catal A Chem 185:291–303

    Article  CAS  Google Scholar 

  33. Uchida Y, Mestl G, Ovsitser OY, Jäger J, Blume A, Schlögl R (2002) J Mol Catal A Chem 187:247–257

    Article  CAS  Google Scholar 

  34. Chen C, Kosuke N, Murayama T, Ueda W (2013) Chem Cat Chem 5:2869–2873

    CAS  Google Scholar 

  35. Ishikawa S, Yi X, Murayama T, Ueda W (2014) Catal Today 238:35–40

    Article  CAS  Google Scholar 

  36. Werner H, Timpe O, Herein D, Uchida Y, Pfänder N, Wild U, Schlögl R, Hibst H (1997) Catal Lett 44:153–163

    Article  CAS  Google Scholar 

  37. Adams AH, Haaß F, Buhrmester T, Kunert J, Ott J, Vogel H, Fuess H (2004) J Mol Catal A Chem 216:67–74

    Article  CAS  Google Scholar 

  38. Schimanke G, Martin M, Kunert J, Vogel H (2005) Z Für Anorg Allg Chem 631:1289–1296

    Article  CAS  Google Scholar 

  39. Tichý J, Machek J (1992) Catal Lett 15:401–404

    Article  Google Scholar 

  40. Breiter S, Estenfelder M, Lintz H-G, Tenten A, Hibst H (1996) Appl Catal A 134:81–89

    Article  CAS  Google Scholar 

  41. Bondareva VM, Andrushkevich TV, Pankratiev YD, Turkov VM (1986) React Kinet Catal Lett 32:387–392

    Article  CAS  Google Scholar 

  42. Bondareva VM, Andrushkevich TV, Paukshtis EA (1986) React Kinet Catal Lett 32:71–76

    Article  CAS  Google Scholar 

  43. Kihlborg L (1969) Acta Chemica Scand 23:1834

    Article  CAS  Google Scholar 

  44. Rödel E, Timpe O, Trunschke A, Zenkovets GA, Kryukova GN, Schlögl R, Ressler T (2007) Catal Today 126:112–118

    Article  Google Scholar 

  45. Mars P, van Krevelen DW (1954) Chem Eng Sci 3(Supplement 1):41–59

    Article  CAS  Google Scholar 

  46. Ohler N, Bell AT (2005) J Phys Chem B 109:23419–23429

    Article  CAS  Google Scholar 

  47. Busca G, Finocchio E, Ramis G, Ricchiardi G (1996) Catal Today 32:133–143

    Article  CAS  Google Scholar 

  48. Finocchio E, Busca G, Lorenzelli V, Escribano VS (1996) J Chem Soc Faraday Trans 92:1587–1593

    Article  CAS  Google Scholar 

  49. Sokolovskii VD, Ovsitser OY (1992) React Kinet Catal Lett 46:415–419

    Article  CAS  Google Scholar 

  50. Ovsitser OY, Sokolovskii VD (1993) Catal Lett 17:239–244

    Article  CAS  Google Scholar 

  51. Erenburg EM, Andrushkevich TV, Popova GY, Davydov AA, Bondareva VM (1979) React Kinet Catal Lett 12:5–11

    Article  CAS  Google Scholar 

  52. Landi G, Lisi L, Volta JC (2004) Catal Today 91–92:275–279

    Article  Google Scholar 

  53. Levy LB, DeGroot PB (1982) J Catal 76:385–392

    Article  CAS  Google Scholar 

  54. Lin MM (2001) Appl Catal A 207:1–16

    Article  CAS  Google Scholar 

  55. Ovsitser OY, Guljaev KS, Sokolovskii VD (1991) Catal Lett 8:379–384

    Article  CAS  Google Scholar 

  56. Redlingshöfer H, Kröcher O, Böck W, Huthmacher K, Emig G (2002) Ind Eng Chem Res 41:1445–1453

    Article  Google Scholar 

  57. Suprun WY, Sadovskaya EM, Rüdinger C, Eberle H-J, Lutecki M, Papp H (2011) Appl Catal A 391:125–136

    Article  CAS  Google Scholar 

  58. Suprun WY, Sabde DP, Schädlich HK, Kubias B, Papp H (2005) Appl Catal A 289:66–73

    Article  CAS  Google Scholar 

  59. Popova GY, Chesalov YA, Sadovskaya EM, Andrushkevich TV (2012) J Mol Catal A: Chem 357:148–153

    Article  CAS  Google Scholar 

  60. Moro-oka Y, Ueda W, He D-H (1993) Surface reactions controlled by the bulk migration of oxide ions. In: Tamaru K (ed) Dynamic processes on solid surfaces. Springer, US, pp 283–305

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Vogel.

Additional information

Dedicated to the 85th birthday of Prof. Dr. Robert K. Grasselli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drochner, A., Ohlig, D., Knoche, S. et al. Mechanistic Studies on the Transition Metal Oxide Catalysed Partial Oxidation of (Meth)Acrolein to the Corresponding Carboxylic Acids. Top Catal 59, 1518–1532 (2016). https://doi.org/10.1007/s11244-016-0670-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0670-3

Keywords

Navigation