Skip to main content
Log in

Mechanism of Ethanol Steam Reforming Over Pt/(Ni+Ru)-Promoted Oxides by FTIRS In Situ

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Mechanism of ethanol steam reforming into syngas over Pt/Pr0.15Sm0.15Ce0.35Zr0.35O2 and 10 wt% LaNi0.9Ru0.1O3/Mg-Al2O3 catalysts was studied by in situ FTIRS and pulse titration experiments. Surface species (ethoxy, adsorbed ethanol, acetaldehyde, acetate, etc.) were identified and their thermal stability, routers of transformation and reactivity were characterized. Acetate species were shown to be spectators for both types of catalysts. Transformation of ethoxy species by dehydrogenation is a fast step, while the rate-determining stage is the C–C bond rupture in thus formed acetaldehyde on metal sites. For Pt/Pr0.15Sm0.15Ce0.35Zr0.35O2 catalyst with a high mobility and reactivity of the surface/lattice oxygen of support, efficient oxidative transformation of acetaldehyde at the metal-support interface provides a high yield of syngas at short contact times in the intermediate temperature range with a minor amount of CH4 by-product. Transformation of ethoxy species on the acid sites of alumina-supported catalyst produces C2H4 and (C2H5)2O via dehydration route dominating at temperatures below 400 °C. In addition, for alumina-supported catalyst acetone is produced via aldol formation in the temperature range 400–500 °C due to combined action of metal and support sites. For this catalyst syngas yield is improved at high temperatures when steam reforming of these byproducts efficiently proceeds accompanied by cracking reactions producing also methane as by-product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Trane R, Dahl S, Skjøth-Rasmussen MS, Jensen AD (2012) Int J Hydrog Energy 37:6447–6472

    Article  CAS  Google Scholar 

  2. Chattanathan SA, Adhikari S, Abdoulmoumine N (2012) Renew Sustain Energy Rev 16:2366–2372

    Article  Google Scholar 

  3. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098–2106

    Article  CAS  Google Scholar 

  4. Aupretre F, Descorme C, Duprez D, Casanave D, Uzio D (2005) J Catal 233:464–477

    Article  CAS  Google Scholar 

  5. Lin SS-Y, Kim DH, Haa SY (2009) Appl Catal A 355:69–77

  6. Cai W, Wang F, Daniel C, van Veen AC, Schuurman Y, Descorme C, Provendier H, Shen W, Mirodatos C (2012) J Catal 286:137–152

    Article  CAS  Google Scholar 

  7. de Lima SM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) J Catal 257:356–368

    Article  Google Scholar 

  8. Akdim O, Cai W, Fierro V, Provendier H, van Veen A, Shen W, Mirodatos C (2008) Top Catal 51:22–38

    Article  CAS  Google Scholar 

  9. Song H, Ozkan US (2009) J Catal 261:66–74

    Article  CAS  Google Scholar 

  10. Jacobs G, Keogh RA, Davis BH (2007) J Catal 245:326–337

    Article  CAS  Google Scholar 

  11. Resini C, Montanari T, Barattini L, Ramis G, Busca G, Presto S, Riani P, Marazza R, Sisani M, Marmottini F, Costantino U (2009) Appl Catal A 355:83–93

    Article  CAS  Google Scholar 

  12. de Lima SM, da Silva AM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Appl Catal B 96:387–398

    Article  Google Scholar 

  13. Palma V, Castaldo F, Ciambelli P, Iaquaniello G, Capitani G (2013) Int J Hydrog Energy 38:6633–6664

    Article  CAS  Google Scholar 

  14. Raskó J, Hancz A, Erdőhelyia A (2004) Appl Catal A 269:13–25

    Article  Google Scholar 

  15. Scott M, Goeffroy M, Chiu W, Blackford MA, Idriss H (2008) Top Catal 51:13–21

    Article  CAS  Google Scholar 

  16. Benito M, Padilla R, Serrano-Lotina A, Rodriguez L, Brey JJ, Daza L (2009) J Power Sources 192:158–164

    Article  CAS  Google Scholar 

  17. Arapova MV, Pavlova SN, Rogov VA, Krieger TA, Ishchenko AV, Roger A-C (2014) Catal Sustain Energy 1:10–20

    Google Scholar 

  18. Pavlova S, Yaseneva P, Sadykov V, Rogov V, Tikhov S, Bespalko Y, Belochapkine S, Ross J (2014) J RSC Adv 4:37964–37972

    Article  CAS  Google Scholar 

  19. Nadeem AM, Waterhouse GIN, Idriss H (2012) Catal Today 182:16

    Article  CAS  Google Scholar 

  20. Szijjártó GP, Pásti Z, Sajó I, Erdőhelyi A, Radnóczi G, Tompos A (2013) J Catal 305:290–306

    Article  Google Scholar 

  21. Raskó J, Dömök M, Baán K, Erdőhelyi A (2006) Appl Catal A 299:202–211

    Article  Google Scholar 

  22. Tret’yakov VF, Nhu CTQ, Tret’yakov KV, Sil’chenkova ON, Matyshak VA (2013) Russ J Phys Chem A 87:941–944

  23. Llorca J, Homs N (2004) Ramirez de la Piscina P. J Catal 227:556–560

    Article  CAS  Google Scholar 

  24. Busca G, Montanari T, Resini C, Ramis G, Costantino U (2009) Catal Today 143:2–8

    Article  CAS  Google Scholar 

  25. Fatsikostas AN, Verykios XE (2004) J Catal 255:439–452

    Article  Google Scholar 

  26. Matyshak VA, Sadykov VA, Chernyshov KA, Ross J (2009) Catal Today 145:152–162

    Article  CAS  Google Scholar 

  27. Sadykov VA, Lunin VV, Matyshak VA, Paukshtis EA, Rozovskii AY, Bulgakov NN, Ross J (2003) Kinet Catal 44:379–400

    Article  CAS  Google Scholar 

  28. Sadykov V, Mezentseva N, Simonov M, Smal E, Arapova M, Pavlova S, Fedorova Y, Chub O, Bobrova L, Kuzmin V, Ishchenko A, Krieger T, Roger A-C, Parkhomenko K, Mirodatos C, Smorygo O, Ross J (2015) Int J Hydrog Energy 40:7511–7522

    Article  CAS  Google Scholar 

  29. Sadykov V, Mezentseva N, Fedorova Y, Lukashevich A, Pelipenko V, Kuzmin V, Simonov M, Ishchenko A, Vostrikov Z, Bobrova L, Sadovskaya E, Muzykantov V, Zadesenets A, Smorygo O, Roger A-C, Parkhomenko K (2015) Catal Today 251:19–27

    Article  CAS  Google Scholar 

  30. Bobin AS, Sadykov VA, Rogov VA, Mezentseva NV, Alikina GM, Sadovskaya EM, Glazneva TS, Sazonova NN, Smirnova MY, Veniaminov SA, Mirodatos C, Galvita V, Marin GB (2013) Top Catal 56:958–968

    Article  CAS  Google Scholar 

  31. Arapova MV, Pavlova SN, Larina TV, Rogov VA, Krieger TA, Sadykov VA, Smorygo O, Parkhomenko K, Roger A-C (2015) Hydrogen and syngas production via ethanol steam reforming over supported ferrites-nikelates. In: Mendez-Vilas A (ed) Materials and technologies for energy efficiency. BrownWalker Press, Boca Raton, pp 131–135, ISBN-10: 1-62734-559-0, ISBN-13: 978-1-62734-559-0

  32. Zhong Z, Ang H, Choong C, Chen L, Huang L, Lin J (2009) Chem Phys Phys Chem 11:872–880

    Article  CAS  Google Scholar 

  33. Sahoo DR, Vajpai Sh, Patel S, Pant KK (2007) Chem Eng J 125:139–147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support by Russian Fund of Basic Research Projects RFBR-CNRS 12-03-93115 and 15-53-16020, FP7 Project BIOGO (NMP-LA-2009-604296) and the Ministry of Education and Science of the Russian Federation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Sadykov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, V.A., Chub, O.V., Chesalov, Y.A. et al. Mechanism of Ethanol Steam Reforming Over Pt/(Ni+Ru)-Promoted Oxides by FTIRS In Situ. Top Catal 59, 1332–1342 (2016). https://doi.org/10.1007/s11244-016-0659-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0659-y

Keywords

Navigation