Skip to main content
Log in

Real-Time Observation of Reaction Processes of CO2 on Cu(997) by Ambient-Pressure X-ray Photoelectron Spectroscopy

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The reaction of CO2 on the vicinal Cu(997) surface at 340 K under CO2 gas pressure of 0.8 mbar was investigated by ambient pressure X-ray photoelectron spectroscopy. A main reaction product on the surface was identified as carbonate (CO3), based on estimation of the composition ratio of oxygen to carbon. CO3 was produced on the surface through the reaction of CO2 with oxygen formed from CO2 dissociation. The amount of adsorbed CO3 was increased and saturated as time elapsed. After saturation of adsorbed CO3, atomic oxygen appeared on the surface, indicating that CO2 dissociation into CO and O continued to take place. The present study shows the importance of CO3 intermediate in the CO2 chemistry on stepped Cu surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dibenedetto A, Angelini A, Stufano P (2014) Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. J Chem Technol Biotechnol 89:334–353

    Article  CAS  Google Scholar 

  2. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Olah GA, Goeppert A, Surya Prakash GK (2009) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Solymosi F (1991) The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal-surfaces. J Mol Catal 65(3):337–358

    Article  CAS  Google Scholar 

  5. Rasmussen PB, Taylor PA, Chorkendorff I (1992) The interaction of carbon-dioxide with Cu(100). Surf Sci 269–270:352–359

    Article  Google Scholar 

  6. Taylor PA, Rasmussen PB, Chorkendorff I (1992) Carbon-dioxide chemistry on Cu(100). J Vac Sci Technol, A 10(4):2570–2575

    Article  CAS  Google Scholar 

  7. Rodriguez JA, Clendening WD, Campbell CT (1989) Adsorption of CO and CO2 on clean and cesium-covered Cu(110). J Phys Chem 93(13):5238–5248

    Article  CAS  Google Scholar 

  8. Bönicke IA, Kirstein W, Thieme F (1994) A study on CO2 dissociation on a stepped (332) copper surface. Surf Sci 307–309:177–181

    Article  Google Scholar 

  9. Fu SS, Somorjai GA (1992) Interactions of O2, CO, CO2, and D2 with the stepped Cu(311) crystal-face: comparison to Cu(110). Surf Sci 262(1–2):68–76

    Article  CAS  Google Scholar 

  10. Salmeron M, Schlögl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63(4):169–199

    Article  CAS  Google Scholar 

  11. Starr DE, Liu Z, Hävecker M, Knop-Gericke A, Bluhm H (2013) Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem Soc Rev 42(13):5833–5857

    Article  CAS  Google Scholar 

  12. Deng X, Verdaguer A, Herranz T, Weis C, Bluhm H, Salmeron M (2008) Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 24(17):9474–9478

    Article  CAS  Google Scholar 

  13. Yamamoto S, Senba Y, Tanaka T, Ohashi H, Hirono T, Kimura H, Fujisawa M, Miyawaki J, Harasawa A, Seike T, Takahashi S, Nariyama N, Matsushita T, Takeuchi M, Ohata T, Furukawa Y, Takeshita K, Goto S, Harada Y, Shin S, Kitamura H, Kakizaki A, Oshima M, Matsuda I (2014) New soft X-ray beamline BL07LSU at SPring-8. J Synchrotron Rad 21:352–365

    Article  CAS  Google Scholar 

  14. Hayden BE, Prince K, Woodruff DP, Bradshaw AM (1983) An IRAS study of formic-acid and surface formate adsorbed on Cu(110). Surf Sci 133(2–3):589–604

    Article  CAS  Google Scholar 

  15. Axnanda S, Scheele M, Crumlin E, Mao B, Chang R, Rani S, Faiz M, Wang S, Alivisatos AP, Liu Z (2013) Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles. Nano Lett 13:6176–6182

    Article  CAS  Google Scholar 

  16. Davies PR, Keel JM (2000) The reaction of carbon dioxide with amines at a Cu(211) surface. Surf Sci 469(2–3):204–213

    Article  CAS  Google Scholar 

  17. Copperthwaite RG, Davies PR, Morris MA, Roberts MW, Ryder RA (1988) The reactive chemisorption of carbon dioxide at magnesium and copper surfaces at low temperature. Catal Lett 1:11–20

    Article  CAS  Google Scholar 

  18. Browne VM, Carley AF, Copperthwaite RG, Davies PR, Moser EM, Roberts MW (1991) Activation of carbon-dioxide at bismuth, gold and copper surfaces. Appl Surf Sci 47(4):375–379

    Article  CAS  Google Scholar 

  19. Swift P (1982) Adventitious carbon—the panacea for energy referencing. Surf Interface Anal 4(2):47–51

    Article  CAS  Google Scholar 

  20. Rajumon MK, Prabhakaran K, Rao CNR (1990) Adsorption of oxygen on (100), (110) and (111) surfaces of Ag, Cu and Ni: an electron spectroscopic study. Surf Sci 233(1–2):L237–L242

    Article  CAS  Google Scholar 

  21. Carley AF, Chambers A, Davies PR, Mariotti GG, Kurian R, Roberts MW (1996) Surface oxygen and chemical specificity at copper and caesium surfaces. Faraday Discuss 105:225–235

    Article  CAS  Google Scholar 

  22. Pohl M, Otto A (1998) Adsorption and reaction of carbon dioxide on pure and alkali-metal promoted cold-deposited copper films. Surf Sci 406(1–3):125–137

    Article  CAS  Google Scholar 

  23. Carley AF, Davies PR, Mariotti GG (1998) The oxidation of formic acid to carbonate at Cu(110) surfaces. Surf Sci 401(3):400–411

    Article  CAS  Google Scholar 

  24. Muttaqien F, Hamamoto Y, Inagaki K, Morikawa Y (2014) Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfaces. J Chem Phys 141(3):034702

    Article  Google Scholar 

  25. Schumacher N, Andersson K, Grabow LC, Mavrikakis M, Nerlov J, Chorkendorff I (2008) Interaction of carbon dioxide with Cu overlayers on Pt(111). Surf Sci 602(3):702–711

    Article  CAS  Google Scholar 

  26. Millar GJ, Rochester CH, Howe C, Waugh KC (1992) A combined infrared, temperature programmed desorption and temperature programmed reaction spectroscopy study of CO2 and H2 interactions on reduced and oxidized silica-supported copper-catalysts. Mol Phys 76(4):833–849

    Article  CAS  Google Scholar 

  27. Waugh KC (2012) Methanol synthesis. Catal Lett 142(10):1153–1166

    Article  CAS  Google Scholar 

  28. Schumacher N, Andersson KJ, Nerlov J, Chorkendorff I (2008) Formate stability and carbonate hydrogenation on strained Cu overlayers on Pt(111). Surf Sci 602(16):2783–2788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the Advanced-Catalytic-Transformation program for Carbon utilization (ACT-C) of Japan Science and Technology Agency (JST). This work was carried out as joint research in the Synchrotron Radiation Research Organization and The Institute for Solid State Physics, The University of Tokyo (Proposal No. 2014B7479 and 2015A7491). Y.S. acknowledges financial support from The University of Tokyo, Research Assistantship Program. K.T. acknowledges financial support from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Photon and Quantum Basic Research Coordinated Development Program). R.L. acknowledges financial support from The University of Tokyo Fellowship, Special Scholarship Program for International Students. The authors would like to thank J. Nakamura and Y. Morikawa for many helpful suggestions and discussions. The authors are grateful for the valuable advice and discussion in the design phase of our AP-XPS system: H. Bluhm, D. E. Starr, M. Salmeron, Z. Liu, E. Crumlin, S. Axnanda, S. Kaya, H. Ogasawara, A. Nilsson, F. Tao, S. R. Zhang, F. Rochet, J.-J. Gallet, G. Olivieri, M. G. Silly, F. Sirroti, and H. Kondoh. We would also like to thank J. Wittich, C. Amicabile, T. König at SPECS Surface Nano Analysis GmbH and K. Matsuda at Tec Corporation for the installation of the system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koitaya, T., Yamamoto, S., Shiozawa, Y. et al. Real-Time Observation of Reaction Processes of CO2 on Cu(997) by Ambient-Pressure X-ray Photoelectron Spectroscopy. Top Catal 59, 526–531 (2016). https://doi.org/10.1007/s11244-015-0535-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0535-1

Keywords

Navigation