Skip to main content
Log in

Methanol Synthesis

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Methanol, like ammonia, is one of the key industrial chemicals produced by heterogeneous catalysis. As with the original ammonia catalyst (Fe/K/Al2O3), so with methanol, the original methanol synthesis catalyst, ZnO, was discovered by Alwin Mittasch. This was translated into an industrial process in which methanol was produced from CO/H2 at 400 °C and 200 atm. Again, as with the ammonia catalyst where the final catalyst which is currently used was achieved only after exhaustive screening of putative “promoters”, so with methanol, exhaustive screening of additives was undertaken to promote the activity of the ZnO. Early successful promoters were Al2O3 and Cr2O3 which enhanced the stability of the ZnO but not its activity. The addition of CuO was found to increase the activity of the ZnO but the catalyst so produced was short lived. Current methanol synthesis catalysts are fundamentally Cu/ZnO/Al2O3, having high CuO contents of ~60 % with ZnO ~ 30 % and Al2O3 ~ 10 %. Far from promoting the activity of the ZnO by incorporation of CuO, the active component of these Cu/ZnO/Al2O3 catalysts is Cu metal with the ZnO simply being involved as the preferred support. Other supports for the Cu metal, e.g. Al2O3, MgO, MnO, Cr2O3, ZrO2 and even SiO2 can also be used. In all of these catalysts the activity scales with the Cu metal area. The original feed has now changed from CO/H2 to CO/CO2/H2 (10:10:80), radiolabelling studies having provided the unlikely discovery that it is the CO2 molecule which is hydrogenated to methanol; the CO molecule acts as a reducing agent. The CO2 is transformed to methanol on the Cu through the intermediacy of an adsorbed formate species. These Cu/ZnO/Al2O3 catalysts now operate at ~230° and between 50 and 100 atm. This important step change in the activity of methanol synthesis has resulted in a significant reduction in the energy required to produce methanol. The “step change” however has been incremental. It has been obtained on the basis of fundamental knowledge provided by a combination of surface science techniques, e.g. LEED, scanning tunnelling microscope, TPD, temperature programmed reaction spectroscopy, combined with catalytic mechanistic studies, including radiolabelling studies and chemisorption studies including reactive chemisorption studies, e.g. N2O reactive frontal chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Anilin B, Fabik S (1923) DR Patent 415,686; 441,443; 462,837

  2. Anilin B, Fabik S (1923) US Patent 1,558,559; 1,569,775

  3. Schmidt O, Ufers K (1928) D Patent 571,355; 571,356; 580,705

  4. Natta G (1955) In: Emmett PH (ed) Catalysis, vol III. Reinhold Publishing Corp, New York, p 373

    Google Scholar 

  5. Davies P, Snowdon FF, Bridger GW, Hughes DO, Young PW (1966) UK Patent 101087

  6. Andrew SPS, private communication

  7. Luo Y-R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Taylor Francis Group, Boca Raton

  8. Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, Kobylinski TP (1979) J Catal 56:407

    Article  CAS  Google Scholar 

  9. Bulka JB, Herman RG, Klier K, Simmons GW (1979) J Phys Chem 83:3118

    Article  Google Scholar 

  10. Mehta S, Simmons GW, Klier K, Herman RG (1979) J Catal 57:339

    Article  CAS  Google Scholar 

  11. Klier K (1982) Adv Catal 31:243

    Article  CAS  Google Scholar 

  12. Klier K (1984) Appl Surf Sci 19:267

    Article  CAS  Google Scholar 

  13. Kagan YuB, Liberov LG, Slivinsky EV, Lockev SM, Lin GI, Ya Rozovsky A, Bashkirov AN (1975) Dokl Acad Nauk SSSR 222:1093

    Google Scholar 

  14. Chinchen GC, Waugh KC, Whan DA (1986) Appl Catal 25:101

    Article  CAS  Google Scholar 

  15. Chinchen GC, Denny PJ, Parker DG, Short GD, Spencer MS, Waugh KC, Whan DA (1984) Prepr Am Chem Soc Div Fuel Chem 29:178

    CAS  Google Scholar 

  16. Ertl G (1967) Surf Sci 6:208

    Article  Google Scholar 

  17. Chinchen GC, Hay CM, Vandervell HD, Waugh KC (1987) J Catal 103:79

    Article  CAS  Google Scholar 

  18. Waugh KC (1988) Appl Catal 43:315

    Article  CAS  Google Scholar 

  19. Whan DA, private communication

  20. Pan WX, Cao R, Roberts DL, Griffin GL (1988) J Catal 114:440

    Article  CAS  Google Scholar 

  21. Muhler M, Nielsen LP, Tornqvist E, Clausen BS, Topsoe H (1992) Catal Lett 14:241

    Article  CAS  Google Scholar 

  22. Topsoe N, Topsoe H (1999) Top Catal 8:267

    Article  CAS  Google Scholar 

  23. Dell RM, Stone FS, Tiley PF (1953) Trans Faraday Soc 49:195

    Article  CAS  Google Scholar 

  24. Haddon RA, Vandervell HD, Waugh KC, Webb G (1988) Catal Lett 1:27

    Article  Google Scholar 

  25. Elliott AJ, Hadden RA, Tabatabaei J, Waugh KC, Zemicael FW (1995) J Catal 157:153

    Article  CAS  Google Scholar 

  26. Nakamura J, Rodriguez JA, Campbell CT (1989) J Phys Condens Matter 1:SB149

    Article  CAS  Google Scholar 

  27. Schneider T, Hirschwald W (1992) Catal Lett 14:192

    Article  Google Scholar 

  28. Fu SS, Somorjai GA (1990) Surf Sci 237:87

    Article  CAS  Google Scholar 

  29. Fu SS, Somorjai GA (1992) Surf Sci 262:68

    Article  CAS  Google Scholar 

  30. Bowker M, Hadden RA, Houghton H, Hyland JNK, Waugh KC (1988) J Catal 109(2):263

    Article  CAS  Google Scholar 

  31. Wachs IE, Madix RJ (1978) J Catal 53:208

    Article  CAS  Google Scholar 

  32. Ying DHS, Madix RJ (1980) J Catal 61:48

    Article  CAS  Google Scholar 

  33. Bowker M, Houghton H, Waugh KC (1981) J Chem Soc Faraday Trans 1 77:3023

    Article  CAS  Google Scholar 

  34. Millar G, Rochester CH, Howe C, Waugh KC (1991) Mol Phys 76:833

    Article  Google Scholar 

  35. Bailey S, Froment GF, Snoeck GW, Waugh KC (1995) Catal Lett 30:99

    Article  Google Scholar 

  36. Taylor PA, Rasmussen PB, Chorkendorff I (1995) J Chem Soc Faraday Trans 91:1267

    Article  CAS  Google Scholar 

  37. Sakakini BH, Tabatabaei J, Watson MJ, Waugh KC, Zemicael FW (1966) Faraday Discuss 105:369

    Article  Google Scholar 

  38. Chinchen GC, Waugh KC (1986) J Catal 97:280

    Article  CAS  Google Scholar 

  39. Rasmussen PB, Holmblad PM, Christoffersen H, Taylor PA, Chorkendorff I (1993) Surf Sci 287/288:71

    Article  Google Scholar 

  40. Wintterlin J, Ertl G, Behn RJ (1990) Phys Rev Lett 64:1761

    Article  Google Scholar 

  41. Besenbacher F, Springer PT, Raun L, Olsen L, Stensgaard I, Loegsgaard E (1994) Top Catal 1:325

    Article  CAS  Google Scholar 

  42. Joshihara J, Parker SC, Schafer A, Campbell CT (1995) Catal Lett 31:313

    Article  Google Scholar 

  43. Joshihara J, Campbell CT (1996) J Catal 161:776

    Article  Google Scholar 

  44. Nakamura J, Campbell JM, Campbell CT (1990) J Chem Soc Faraday Trans 86:2725

    Article  Google Scholar 

  45. Campbell CT, Daube KA (1987) J Catal 104:109

    Article  CAS  Google Scholar 

  46. Muhler M, Tornqvist E, Nielsen LP, Clausen BS, Topsoe H (1994) Catal Lett 25:1

    Article  CAS  Google Scholar 

  47. Chinchen GC, Spencer MS, Waugh KC, Whan DA (1987) J Chem Soc Faraday Trans 183:2193

    Google Scholar 

  48. Bielawa H, Kurtz M, Genger J, Hinrichsen O (2001) Ind Eng Chem Res 40:2793

    Article  CAS  Google Scholar 

  49. Wilmer H, Hinrichsen O (2002) Catal Lett 82:117

    Article  CAS  Google Scholar 

  50. Hadden RA, Sakakini BH, Tabatabaei J, Waugh KC (1997) Catal Lett 44:145

    Article  CAS  Google Scholar 

  51. Sakakini BH, Tabatabaei J, Watson MJ, Waugh KC (2000) J Mol Catal A 162:297

    Article  CAS  Google Scholar 

  52. Pritchard J, Catterick T, Gupta RG (1975) Surf Sci 53:1

    Article  CAS  Google Scholar 

  53. Hadden RA, Lambert PJ, Ranson C (1995) Appl Catal A 122:L1

    Article  CAS  Google Scholar 

  54. Spitzer A, Luth H (1985) Surf Sci 152/153:543

    Article  Google Scholar 

  55. Au CT, Breza J, Roberts MW (1979) Chem Phys Lett 66:340

    Article  CAS  Google Scholar 

  56. Spitzer A, Luth H (1982) Surf Sci 120:376

    Article  CAS  Google Scholar 

  57. Heras JM, Viscido L (1988) Catal Rev Sci Eng 30(2):306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Waugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waugh, K.C. Methanol Synthesis. Catal Lett 142, 1153–1166 (2012). https://doi.org/10.1007/s10562-012-0905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0905-2

Keywords

Navigation