Skip to main content
Log in

Factors Influencing Hydrogenation and Decomposition of H2O2 Over Pd–Au Catalysts Supported on Activated Carbon Cloth (ACC)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The bimetallic Pd–Au catalysts were prepared by simultaneous co-impregnation or consequent impregnation of supports by palladium and gold precursors. The catalytic reactions were performed batch-wise in a Parr stainless steel autoclave and methanol (220 ml) was used as solvent. A series of experiments were conducted to study effects of several variables and conditions on the final H2O2 destruction activity of the catalysts. The factors studied where : the surface chemistry of the support, the amount and ratio of palladium and gold, the catalyst preparation method, the heat treatment of the catalysts in H2 and air, the reaction medium, and reaction temperature. As a conclusion, H2O2 destruction activities of the catalysts were strongly affected by the surface chemistry of the support and the amount and ratio of palladium and gold. Bimetallic catalysts prepared by co-impregnation of Pd and Au were less destructive than the corresponding ones prepared by consequent impregnation. The catalysts supported on activated carbon cloth (ACC) oxidized by nitric acid were considerably less destructive than the corresponding ones on non-oxidized ACC. H2O2 destruction activity of the catalysts on oxidized ACC were highly affected by the heat treatment in H2 and air at different temperatures. Using water instead of methanol as reaction medium substantially speeded up H2O2 destruction. Furthermore, increasing the reaction temperature accelerated destruction of H2O2. Catalytic destruction of H2O2 via its decomposition was considerably low as compared to hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ntainjua EN, Piccinini M, Freakley SJ, Pritchard JC, Edwards JK, Carley AF, Hutchings GJ (2012) Green Chem 14:170–181

    Article  CAS  Google Scholar 

  2. Edwards JK, Hutchings GJ (2008) Angew Chem Int Ed 47:9192

    Article  CAS  Google Scholar 

  3. Solsona BE, Edwards JK, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2006) Chem Mater 18:2689

    Article  CAS  Google Scholar 

  4. Gudarzi D, Ratchananusorn W, Turunen I, Heinonen M, Salmi T (2013) Top Catal 56:527

    Article  CAS  Google Scholar 

  5. Gaikwad AG, Sansare SD, Choudhary VR (2002) J Mol Catal A: Chem 181:143–149

    Article  CAS  Google Scholar 

  6. Choudhary VR, Gaikwad AG, Sansare SD (2002) Catal Lett 83:235–239

    Article  CAS  Google Scholar 

  7. Choudhary VR, Sansare SD, Gaikwad AG (2002) Catal Lett 84:81–87

    Article  CAS  Google Scholar 

  8. Gudarzi D, Ratchananusorn W, Turunen I, Heinonen M, Salmi T (2014) Catal Today 248:69–79

  9. Samanta C, Choudhary VR (2007) Catal Commun 8:73

    Article  CAS  Google Scholar 

  10. Choudhary VR, Samanta C, Choudhary TV (2007) Catal Commun 8:1310

    Article  CAS  Google Scholar 

  11. Samanta C, Choudhary VR (2007) Appl Catal A: Gen 326:28

    Article  CAS  Google Scholar 

  12. Samanta C, Choudhary VR (2007) Catal Commun 8:2221

    Google Scholar 

  13. Samanta C, Choudhary VR (2008) Chem Eng J 136:126

    Article  CAS  Google Scholar 

  14. Samanta C, Choudhary VR (2007) Appl Catal A: Gen 330:23

    Article  CAS  Google Scholar 

  15. Krishnan VV, Dokoutchaev AG, Thompson ME (2000) J Catal 196:366–374

    Article  CAS  Google Scholar 

  16. Dissanayake DP, Lunsford JH (2003) J Catal 214:113–120

    Article  CAS  Google Scholar 

  17. Abate S, Centi G, Melada S, Perathoner S, Pinna F, Strukul G (2005) Catal Today 104:323–328

    Article  CAS  Google Scholar 

  18. Melada S, Pinna F, Strukul G, Perathoner S, Centi G (2005) J Catal 235:241–248

    Article  CAS  Google Scholar 

  19. Melada S, Pinna F, Strukul G, Perathoner S, Centi G (2006) J Catal 237:213–219

    Article  CAS  Google Scholar 

  20. Pospelova TA, Kobozev NI, Eremin EN (1961) J Phys Chem 35:143–147

    Google Scholar 

  21. Pospelova TA, Kobozev NI (1961) J Phys Chem 35:262–265

    Google Scholar 

  22. Reis KP, Joshi VK, Thompson ME (1996) J Catal 161:62–67

    Article  CAS  Google Scholar 

  23. Dissanayake DP, Lunsford JH (2002) J Catal 206:173–176

    Article  CAS  Google Scholar 

  24. Chinta S, Lunsford JH (2004) J Catal 225:249

    Article  CAS  Google Scholar 

  25. Han Y-F, Lunsford JH (2005) J Catal 230:313

    Article  CAS  Google Scholar 

  26. Han Y-F, Lunsford JH (2005) Catal Lett 99:13

    Article  CAS  Google Scholar 

  27. Liu Q, Lunsford JH (2006) J Catal 239:237

    Article  CAS  Google Scholar 

  28. Liu Q, Lunsford JH (2006) Appl Catal A: Gen 314:94–100

    Article  CAS  Google Scholar 

  29. Radkevich VZ, Senko TL, Wilson K, Grishenko LM, Zaderko AN, Diyuk VY (2008) Appl Catal A: Gen 335:241–251

    Article  CAS  Google Scholar 

  30. Samanta C (2008) Appl Catal A: Gen 350:133–149

    Article  CAS  Google Scholar 

  31. Fu L, Chuang KT, Fiedorow R (1992) Stud Surf Sci Catal 72:33–41

    Article  CAS  Google Scholar 

  32. Gudarzi D, Simakova OA, Carucci JRH, Biasi PD, Eränen K, Kolehmainen E, Turunen I, Murzin DY, Salmi T (2010) Chem Eng Trans 21:925–930

    Google Scholar 

  33. Danciu T, Beckmann EJ, Hancu T, Cochran RN, Grey R, Hajnik DM, Jewson J (2003) Angew Chem Int Ed 2:1140–1142

    Article  Google Scholar 

  34. Ntainjua EN, Piccinini M, Pritchard JC, Edwards JK, Carley AF, Kiely ChJ, Hutchings GJ (2011) Catal Today 178:47–50

    Article  CAS  Google Scholar 

  35. Landon P, Papworth PJ, Kiely CJ, Hutchings GJ (2002) Chem Commun 18:2058–2059

    Article  Google Scholar 

  36. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1917–1923

    Article  CAS  Google Scholar 

  37. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2005) J Catal 236:69–79

    Article  CAS  Google Scholar 

  38. Edwards JK, Solsona B, Landon P, Carley AF, Herzing A, Watanabe M, Kiely CJ, Hutchings GJ (2005) J Mater Chem 15:4595–4600

    Article  CAS  Google Scholar 

  39. Li G, Edwards J, Carley AF, Hutchings GJ (2007) Catal Today 122:361–364

    Article  CAS  Google Scholar 

  40. Edwards JK, Thomas A, Solsona BE, Landon P, Carley AF, Hutchings GJ (2007) Catal Today 122:397–402

    Article  CAS  Google Scholar 

  41. Li G, Edwards J, Carley AF, Hutchings GJ (2006) Catal Today 114:369–371

    Article  CAS  Google Scholar 

  42. Choudhary VR, Samanta C, Choudhary TV (2006) Appl Catal A: Gen 308:128–133

    Article  CAS  Google Scholar 

  43. Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Faraday Discuss 138:225–239

    Article  CAS  Google Scholar 

  44. Edwards JK, Ntainjua E, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Angew Chem Int Ed 48:8512–8515

    Article  CAS  Google Scholar 

  45. Donnet JB, Bansal RC, Stoeckli F (1990) Carbon fibers. Marcel Dekker, New York

    Google Scholar 

  46. Gudarzi D, Ratchananusorn W, Turunen I, Heinonen M, Salmi T (2014) Catal Today 248:58–68

    Article  Google Scholar 

  47. Moreno-Castilla C, López-Ramón MV, Carrasco-Marín F (2000) Carbon 38:1995–2001

    Article  CAS  Google Scholar 

  48. Wenzhong S, Zhijie L, Yihong L (2008) Recent Pat Chem Eng 1:27–40

    Article  Google Scholar 

  49. Rodríguez-reinoso F (1998) Carbon 36:159–175

    Article  Google Scholar 

  50. Rosas JM, Bedia J, Rodríguez-Mirasol J, Cordero T (2009) Fuel 88:19–26

    Article  CAS  Google Scholar 

  51. Toebes ML, van Dillen JA, de Jong KP (2001) J Mol Catal A: Chem 173:75–98

    Article  CAS  Google Scholar 

  52. Won-Chun Oh, Yum Min-Hyung (2004) Bull Korean Chem Soc 25:1189–1194

    Article  Google Scholar 

  53. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  54. Simonov PA, Romanenko AV, Prosvirin IP, Moroz EM, Boronin AI, Chuvilin AL, Likholobov VA (1997) Carbon 35:73–82

    Article  CAS  Google Scholar 

  55. Prati L, Villa A (2012) Catalysts 2:24–37

    Article  CAS  Google Scholar 

  56. Prati L (1999) Gold Bull 32:96–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Gudarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudarzi, D., Turunen, I., Heinonen, M. et al. Factors Influencing Hydrogenation and Decomposition of H2O2 Over Pd–Au Catalysts Supported on Activated Carbon Cloth (ACC). Top Catal 58, 1019–1035 (2015). https://doi.org/10.1007/s11244-015-0471-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0471-0

Keywords

Navigation