Skip to main content

Advertisement

Log in

Nanostructured Nickelate Oxides as Efficient and Stable Cathode Electrocatalysts for Li–O2 Batteries

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Li–O2 (Li–air) batteries are among the most promising energy storage technologies due to their high theoretical specific capacity and energy density. Key challenges with this technology include high overpotential losses associated with catalyzing the electrochemical reactions (i.e., oxygen reduction and evolution reactions) at the cathode of the battery. In this contribution, we report through the example of La2NiO4+δ that layered nickelate oxide materials with rod-shaped nanostructure exhibit promising electrochemical performance as cathode electrocatalysts for Li–O2 batteries. We demonstrate the ability to control the nanostructure of La2NiO4+δ electrocatalyst at the nanoscale level using a reverse-microemulsion synthesis approach. We show that Li–O2 batteries with cathodes containing rod-shaped La2NiO4+δ electrocatalyst exhibit lower charging potentials and higher reversible capacities when compared to batteries with carbon-only cathodes. Our studies indicate that the enhancement in the battery performance induced by the rod-shaped La2NiO4+δ electrocatalyst can be attributed to the fact that La2NiO4+δ nanorods (i) facilitate the formation of nanosized Li2O2 particles during discharge, and (ii) promote the electrocatalytic activity toward the oxygen evolution reaction during charging. These findings open up avenues for the utilization of (i) reverse-microemulsion method for controlling the nanostructure of layered oxide materials, and (ii) nanorod-structured nickelate oxides as efficient cathode electrocatalysts for Li–O2 batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  2. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1(14):2193–2203

    Article  CAS  Google Scholar 

  3. Black R, Adams B, Nazar LF (2012) Adv Energy Mater 2(7):801–815

    Article  CAS  Google Scholar 

  4. Rolison DR, Nazar LF (2011) MRS Bull 36(7):486–493

    Article  CAS  Google Scholar 

  5. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  6. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) J Electrochem Soc 159(2):R1–R30

    Article  CAS  Google Scholar 

  7. Abraham KM, Jiang Z (1996) J Electrochem Soc 143(1):1–5

    Article  CAS  Google Scholar 

  8. Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D (2003) J Electrochem Soc 150(10):A1351–A1356

    Article  CAS  Google Scholar 

  9. Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) J Power Sources 146(1–2):766–769

    Article  CAS  Google Scholar 

  10. Hummelshoj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Norskov JK (2010) J Chem Phys 132(7):071101

    Article  CAS  Google Scholar 

  11. Shao YY, Park S, Xiao J, Zhang JG, Wang Y, Liu J (2012) ACS Catal 2(5):844–857

    Article  CAS  Google Scholar 

  12. Lu YC, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Shao-Horn Y (2013) Energy Environ Sci 6(3):750–768

    Article  CAS  Google Scholar 

  13. Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) Electrochem Solid State Lett 13(6):A69–A72

    Article  CAS  Google Scholar 

  14. Sun B, Munroe P, Wang GX (2013) Scientific Reports 3

  15. Ogasawara T, Debart A, Holzapfel M, Novak P, Bruce PG (2006) J Am Chem Soc 128(4):1390–1393

    Article  CAS  Google Scholar 

  16. Oh SH, Black R, Pomerantseva E, Lee JH, Nazar LF (2012) Nat Chem 4(12):1004–1010

    Article  CAS  Google Scholar 

  17. Lu YC, Xu ZC, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) J Am Chem Soc 132(35):12170–12171

    Article  CAS  Google Scholar 

  18. Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) ACS Nano 7(4):3532–3539

    Article  CAS  Google Scholar 

  19. Lei Y, Lu J, Luo X, Wu T, Du P, Zhang X, Ren Y, Wen J, Miller DJ, Miller JT, Sun YK, Elam JW, Amine K (2013) Nano Lett 13(9):4182–4189

    Article  CAS  Google Scholar 

  20. Lim HD, Song H, Gwon H, Park KY, Kim J, Bae Y, Kim H, Jung SK, Kim T, Kim YH, Lepro X, Ovalle-Robles R, Baughman RH, Kang K (2013) Energy Environ Sci 6(12):3570–3575

    Article  CAS  Google Scholar 

  21. Yilmaz E, Yogi C, Yamanaka K, Ohta T, Byon HR (2013) Nano Lett 13(10):4679–4684

    Article  CAS  Google Scholar 

  22. Jian ZL, Liu P, Li FJ, He P, Guo XW, Chen MW, Zhou HS (2014) Angew Chem Int Ed 53(2):442–446

    Article  CAS  Google Scholar 

  23. Minowa H, Hayashi M, Takahashi M, Shodai T (2010) Electrochemistry 78(5):353–356

    Article  CAS  Google Scholar 

  24. Yang W, Salim J, Li SA, Sun CW, Chen LQ, Goodenough JB, Kim Y (2012) J Mater Chem 22(36):18902–18907

    Article  CAS  Google Scholar 

  25. Zhao YL, Xu L, Mai LQ, Han CH, An QY, Xu X, Liu X, Zhang QJ (2012) Proc Natl Acad Sci USA 109(48):19569–19574

    Article  CAS  Google Scholar 

  26. Xu JJ, Xu D, Wang ZL, Wang HG, Zhang LL, Zhang XB (2013) Angew Chem Int Ed 52(14):3887–3890

    Article  CAS  Google Scholar 

  27. Meng TJ, Ara M, Wang LX, Naik R, Ng KYS (2014) J Mater Sci 49(11):4058–4066

    Article  CAS  Google Scholar 

  28. Zhang GQ, Hendrickson M, Plichta EJ, Au M, Zheng JP (2012) J Electrochem Soc 159(3):A310–A314

    Article  CAS  Google Scholar 

  29. Jung KN, Lee JI, Im WB, Yoon S, Shin KH, Lee JW (2012) Chem Commun 48(75):9406–9408

    Article  CAS  Google Scholar 

  30. Jung KN, Jung JH, Im WB, Yoon S, Shin KH, Lee JW (2013) ACS Appl Mater Interfaces 5(20):9902–9907

    Article  CAS  Google Scholar 

  31. Jin C, Yang ZB, Cao XC, Lu FL, Yang RZ (2014) Int J Hydrog Energy 39(6):2526–2530

    Article  CAS  Google Scholar 

  32. Vashook VV, Trofimenko NE, Ullmann H, Makhnach LV (2000) Solid State Ion 131(3–4):329–336

    Article  CAS  Google Scholar 

  33. Read MSD, Islam MS, King F, Hancock FE (1999) J Phys Chem B 103(9):1558–1562

    Article  CAS  Google Scholar 

  34. Ma X, Wang B, Xhafa E, Sun K, Nikolla E (2015) Chem Commun 51:137–140

    Article  CAS  Google Scholar 

  35. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) Nat Chem 4(7):579–585

    Article  CAS  Google Scholar 

  36. Laberty C, Zhao F, Swider-Lyons KE, Virkar AV (2007) Electrochem Solid State Lett 10(10):B170

    Article  CAS  Google Scholar 

  37. Schuler JA, Lubbe H, Hessler-Wyser A, Van Herle J (2012) J Power Sources 213:223–228

    Article  Google Scholar 

  38. Read MSD, Islam MS, Watson GW, Hancock FE (2001) J Mater Chem 11(10):2597–2602

    Article  CAS  Google Scholar 

  39. Castro M, Burriel R (1995) Thermochim Acta 269–270:537–552

    Article  Google Scholar 

  40. Čebašek N, Haugsrud R, Norby T (2013) Solid State Ionics 231:74–80

    Article  Google Scholar 

  41. Beattie SD, Manolescu DM, Blair SL (2009) J Electrochem Soc 156(1):A44–A47

    Article  CAS  Google Scholar 

  42. Hu YX, Han XP, Cheng FY, Zhao Q, Hu Z, Chen J (2014) Nanoscale 6(1):177–180

    Article  CAS  Google Scholar 

  43. Younesi R, Hahlin M, Bjorefors F, Johansson P, Edstrom K (2013) Chem Mater 25(1):77–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Science Foundation (CBET-1434696), and Wayne State University. We thank Dr. Kai Sun from the Department of Materials Science and Engineering and Electron Microbeam Analysis Laboratory at the University of Michigan for his help with electron microscopy and spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eranda Nikolla.

Additional information

This contribution is written in honor of Prof. Mark E. Davis for receiving the Somorjai Award for Creativity in Catalysis. The corresponding author, Eranda Nikolla, spent approximately two years in the Davis lab at Caltech as a postdoctoral scholar working on synthesizing active and selective heterogeneous catalysts for chemistries involving the conversion of carbohydrates. She greatly acknowledges Prof. Davis’ impact on her scientific advancement in the area of synthetic approaches for developing mesoporous and microporous materials, as well as catalytic surfaces with targeted active-site functionality. Eranda Nikolla has utilized the tools and knowledge gained from working in the Davis lab to synthesize active and stable electrocatalysts for electrochemical energy storage as illustrated in the article below.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nacy, A., Ma, X. & Nikolla, E. Nanostructured Nickelate Oxides as Efficient and Stable Cathode Electrocatalysts for Li–O2 Batteries. Top Catal 58, 513–521 (2015). https://doi.org/10.1007/s11244-015-0395-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0395-8

Keywords

Navigation