Skip to main content
Log in

Heterogeneous Catalysis for the Conversion of Sugars into Polymers

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The synthesis of commodity polymers from biomass presents interesting challenges and opportunities for new catalytic chemistries. Starting from glucose, reaction pathways to a variety of monomers for commodity polymers are presented. The first step for each pathway is the isomerization of glucose to fructose. This reaction can now be accomplished in aqueous media with hydrophobic, large pore molecular sieves that contain Lewis acid sites as catalysts. A typical catalyst is a pure-silica molecular sieve having the zeolite beta topology and containing a small amount of framework Sn4+ (Sn-Beta). Dehydration of fructose into 5-hydroxymethylfurfural (HMF) provides a convenient path that can lead to 2,5-furandicarboxylic acid (FDCA) for the synthesis of polyethylene furanoate (PEF) or purified terephthalic acid (PTA) (via Diels–Alder reactions) for the synthesis of polyethylene terephthalate (PET). Recent progress on the dehydration of lactic acid could open new routes to acrylic acid and acrylonitrile that are used to produce polyacrylic acid and polyacrylonitrile, respectively, provided more selective catalysts for the retro-aldol deconstruction of fructose are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  2. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6:1415–1442

    Article  CAS  Google Scholar 

  3. Vennestrom PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Angew Chem Int Ed 50:10502–10509

    Article  CAS  Google Scholar 

  4. www.braskem.com.br. Accessed 2014

  5. Moliner M, Roman-Leshkov Y, Davis ME (2010) Proc Natl Acad Sci USA 107:6164–6168

    Article  CAS  Google Scholar 

  6. Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Roman-Leshkov Y, Hwang SJ, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Proc Natl Acad Sci USA 109:9727–9732

    Article  CAS  Google Scholar 

  7. Bermejo-Deval R, Orazov M, Gounder R, Hwang SJ, Davis ME (2014) ACS Catal 4:2288–2297

    Article  CAS  Google Scholar 

  8. Raj N, Caratzoulas S, Vlachos DG (2013) ACS Catal 3:2294–2298

    Article  Google Scholar 

  9. Rajabbeigi N, Torres AI, Lew CM, Elyassi B, Ren L, Wang Z, Cho HJ, Fan W, Daoutidis P, Tsapatsis M (2014) Chem Eng Sci 116:235–242

    Article  CAS  Google Scholar 

  10. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Science 316:1597–1600

    Article  CAS  Google Scholar 

  11. Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) Chem Commun 194:6276–6278

    Article  Google Scholar 

  12. Nakajima K, Noma R, Kitano M, Hara M (2014) J Mol Catal A 388–389:100–105

    Article  Google Scholar 

  13. Nikolla E, Roman-Leshkov Y, Moliner M, Davis ME (2011) ACS Catal 1:408–410

    Article  CAS  Google Scholar 

  14. www.ava-biochem.com. Accessed 2014

  15. www.avantium.com. Accessed 2014

  16. Masuno M, Cannon D, Bissell J, Smith RL, Foster M, Wood AB, Smith PB, Hucul DA WO 2013/040514 A1

  17. Chang CC, Green SK, Williams CL, Dauenhauer P, Fan W (2014) Green Chem 16:585–588

    Article  CAS  Google Scholar 

  18. Lin Z, Ierapetritou M, Nikolakis V (2013) AIChE J 59:2079–2087

    Article  CAS  Google Scholar 

  19. Pacheco JJ, Davis ME (2014) Proc Natl Acad Sci USA 111:8363–8367

    Article  CAS  Google Scholar 

  20. Casanova O, Iborra S, Corma A (2009) ChemSusChem 2:1138–1144

    Article  CAS  Google Scholar 

  21. Yan B, Tao LZ, Liang Y, Xu BQ (2014) ACS Catal 4:1931–1943

    Article  CAS  Google Scholar 

  22. Peng J, Li X, Tang C, Bai W (2014) Green Chem 16:108–111

    Article  CAS  Google Scholar 

  23. Holm MS, Saravanamurugan S, Taarning E (2010) Science 328:602–605

    Article  CAS  Google Scholar 

  24. Lobo RF (2010) ChemSusChem 3:1237–1240

    Article  CAS  Google Scholar 

  25. Bermejo-Deval R PhD Thesis, California Institute of Technology, 2014

Download references

Acknowledgments

I thank my coworkers who are listed on the publications referenced. Financial support for our work listed in the references was primarily from two sources: (i) work supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under the Award Number DE-SC1004, and (ii) Toray Industries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Davis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, M.E. Heterogeneous Catalysis for the Conversion of Sugars into Polymers. Top Catal 58, 405–409 (2015). https://doi.org/10.1007/s11244-015-0386-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0386-9

Keywords

Navigation