Skip to main content

Progress in the Development of Mesoporous Solid Acid and Base Catalysts for Converting Carbohydrates into Platform Chemicals

  • Chapter
Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter provides a general overview of recent studies on catalytic conversion of fructose, glucose, and cellulose to platform chemicals over porous solid acid and base catalysts, including zeolites, ion-exchange resins, heteropoly acids, as well as structured carbon, silica, and metal oxide materials. Attention is focused on the dehydration of glucose and fructose to HMF, isomerization of glucose to fructose, hydrolysis of cellulose to sugar, and glycosidation of cellulose to alkyl glucosides. The correlation of porous structure, surface properties, and the strength or types of acid or base with the catalyst activity in these reactions is discussed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Walter B, Gruson JF, Monnier G (2008) Diesel engines and fuels: a wide range of evolutions to come – general context and research themes. Oil Gas Sci Technol Rev D Ifp Energ Nouv 63:387–393

    Google Scholar 

  2. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66

    Article  CAS  Google Scholar 

  3. Chen G-Q, Patel MK (2011) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099

    Article  CAS  Google Scholar 

  4. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  5. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  6. Danielsen F, Beukema H, Burgess ND, Parish F, Bruehl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358

    Article  Google Scholar 

  7. Kamm B, Kamm M (2007) The concept of biorefinery – production of platform chemicals and final products. Chem Ing Tech 79:592–603

    Article  CAS  Google Scholar 

  8. Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46:5056–5058

    Article  CAS  Google Scholar 

  9. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  10. Gallezot P (2007) Catalytic routes from renewables to fine chemicals. Catal Today 121:76–91

    Article  CAS  Google Scholar 

  11. Roberts MW (2006) Solid state chemistry and the design of heterogeneous catalysts. Catal Lett 67:55–61

    Article  Google Scholar 

  12. Sharma YC, Singh B, Korstad J (2011) Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod Bioref 5:69–92

    Article  CAS  Google Scholar 

  13. Galarneau A, Renzo FD, Fajula F, Vedrine J (2001) Zeolites and mesoporous materials at the dawn of the 21st century. In: Galarneau A, Renzo FD, Fajula F, Vedrine J (eds) The 13th international zeolite conference. Elsevier, Montpellier

    Google Scholar 

  14. Climent MJ, Corma A, Iborra S (2011) Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem 13:520–540

    Article  CAS  Google Scholar 

  15. Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386

    Article  CAS  Google Scholar 

  16. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  17. Crisci AJ, Tucker MH, Dumesic JA, Scott SL (2010) Bifunctional solid catalysts for the selective conversion of fructose to 5-hydroxymethylfurfural. Top Catal 53:1185–1192

    Article  CAS  Google Scholar 

  18. Crisci AJ, Tucker MH, Lee MY, Jang SG, Dumesic JA, Scott SL (2011) Acid-functionalized SBA-15-type silica catalysts for carbohydrate dehydration. ACS Catal 1:719–728

    Article  CAS  Google Scholar 

  19. Guo X, Cao Q, Jiang Y, Guan J, Wang X, Mu X (2012) Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl. Carbohydr Res 351:35–41

    Article  CAS  Google Scholar 

  20. Wang W, Lofgreen JE, Ozin GA (2010) Why PMO? Towards functionality and utility of periodic mesoporous organosilicas. Small 6:2634–2642

    Article  CAS  Google Scholar 

  21. Burleigh MC, Markowitz MA, Jayasundera S, Spector MS, Thomas CW, Gaber BP (2003) Mechanical and hydrothermal stabilities of aged periodic mesoporous organosilicas. J Phys Chem B 107:12628–12634

    Article  CAS  Google Scholar 

  22. Tucker MH, Crisci AJ, Wigington BN, Phadke N, Alamillo R, Zhang J, Scott SL, Dumesic JA (2012) Acid-functionalized SBA-15-type periodic mesoporous organosilicas and their use in the continuous production of 5-Hydroxymethylfurfural. ACS Catal 2:1865–1876

    Article  CAS  Google Scholar 

  23. Bispo C, De Oliveira VK, Sardo M, Bion N, Mafra L, Ferreira P, Jerome F (2014) Catalytic dehydration of fructose to HMF over sulfonic acid functionalized periodic mesoporous organosilicas: role of the acid density. Catal Sci Technol 4:2235–2241

    Article  CAS  Google Scholar 

  24. van der Graaff WNP, Olvera KG, Pidko EA, Hensen EJM (2014) Stability and catalytic properties of porous acidic (organo)silica materials for conversion of carbohydrates. J Mol Catal A Chem 388–389:81–89

    Article  CAS  Google Scholar 

  25. Lucas N, Kokate G, Nagpure A, Chilukuri S (2013) Dehydration of fructose to 5-hydroxymethyl furfural over ordered AlSBA-15 catalysts. Microporous Mesoporous Mater 181:38–46

    Article  CAS  Google Scholar 

  26. Kuehl GH, Timken HKC (2000) Acid sites in zeolite beta: effects of ammonium exchange and steaming. Microporous Mesoporous Mater 35–36:521–532

    Article  Google Scholar 

  27. de Lucas A, Canizares P, Durán A, Carrero A (1997) Dealumination of HZSM-5 zeolites: effect of steaming on acidity and aromatization activity. Appl Catal Gen 154:221–240

    Article  Google Scholar 

  28. Poh NE, Nur H, Muhid MNM, Hamdan H (2006) Sulphated AlMCM-41: mesoporous solid Brønsted acid catalyst for dibenzoylation of biphenyl. Catal Today 114:257–262

    Article  CAS  Google Scholar 

  29. Weingarten R, Tompsett GA, Conner WC Jr, Huber GW (2011) Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J Catal 279:174–182

    Article  CAS  Google Scholar 

  30. Yang ZZ, Deng J, Pan T, Guo QX, Fu Y (2012) A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2. Green Chem 14:2986–2990

    Article  CAS  Google Scholar 

  31. Huang Z, Pan W, Zhou H, Qin F, Xu H, Shen W (2013) Nafion-resin-modified mesocellular silica foam catalyst for 5-hydroxymethylfurfural production from D-fructose. ChemSusChem 6:1063–1069

    Article  CAS  Google Scholar 

  32. Wang J, Xu W, Ren J, Liu X, Lu G, Wang Y (2011) Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chem 13:2678–2681

    Article  CAS  Google Scholar 

  33. Qi X, Guo H, Li L, Smith RL Jr (2012) Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem 5:2215–2220

    Article  CAS  Google Scholar 

  34. Guo F, Fang Z, Zhou TJ (2012) Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures. Bioresour Technol 112:313–318

    Article  CAS  Google Scholar 

  35. Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2005) Green chemistry: biodiesel made with sugar catalyst. Nature 438:178–178

    Article  CAS  Google Scholar 

  36. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793

    Article  CAS  Google Scholar 

  37. Liu R, Chen J, Huang X, Chen L, Ma L, Li X (2013) Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem 15:2895–2903

    Article  CAS  Google Scholar 

  38. Mazzotta MG, Gupta D, Saha B, Patra AK, Bhaumik A, Abu-Omar MM (2014) Efficient solid acid catalyst containing Lewis and Brønsted acid sites for the production of furfurals. ChemSusChem 7:2342–2350

    Article  CAS  Google Scholar 

  39. Moreau C, Durand R, Pourcheron C, Razigade S (1994) Preparation of 5-hydroxymethylfurfural from fructose and precursors over H-form zeolites. Ind Crop Prod 3:85–90

    Article  CAS  Google Scholar 

  40. Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A Gen 145:211–214

    Article  CAS  Google Scholar 

  41. Fang Z, Liu B, Luo J, Ren Y, Zhang Z (2014) Efficient conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by the chromium-exchanged montmorillonite K-10 clay. Biomass Bioenergy 60:171–177

    Article  CAS  Google Scholar 

  42. Liu A, Liu B, Wang Y, Ren R, Zhang Z (2014) Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay. Fuel 117(Part A):68–73

    Article  CAS  Google Scholar 

  43. Kruger JS, Choudhary V, Nikolakis V, Vlachos DG (2013) Elucidating the roles of zeolite H-BEA in aqueous-phase fructose dehydration and HMF rehydration. ACS Catal 3:1279–1291

    Article  CAS  Google Scholar 

  44. Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA (2012) The effect of solvent addition on fructose dehydration to 5-hydroxymethylfurfural in biphasic system over zeolites. J Catal 287:68–75

    Article  CAS  Google Scholar 

  45. Seri K, Inoue Y, Ishida H (2001) Catalytic activity of lanthanide (III) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water. Bull Chem Soc Jpn 74:1145–1150

    Article  CAS  Google Scholar 

  46. Nakamura Y, Morikawa S (1980) The dehydration of D-fructose to 5-hydroxymethyl-2-furaldehyde. Bull Chem Soc Jpn 53:3705–3706

    Article  CAS  Google Scholar 

  47. Lansalot-Matras C, Moreau C (2003) Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal Commun 4:517–520

    Article  CAS  Google Scholar 

  48. Qi X, Watanabe M, Aida TM, Smith JRL (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11:1327–1331

    Article  CAS  Google Scholar 

  49. Shimizu K, Uozumi R, Satsuma A (2009) Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal Commun 10:1849–1853

    Article  CAS  Google Scholar 

  50. Dacquin JP, Lee AF, Pirez C, Wilson K (2012) Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis. Catal Commun 48:212–214

    CAS  Google Scholar 

  51. Dhainaut J, Dacquin J-P, Lee AF, Wilson K (2010) Hierarchical macroporous–mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem 12:296–303

    Article  CAS  Google Scholar 

  52. Qi X, Watanabe M, Aida TM, Smith JRL (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10:799–805

    Article  CAS  Google Scholar 

  53. Qi X, Watanabe M, Aida TM, Smith RL (2008) Selective conversion of D-fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures. Ind Eng Chem Res 47:9234–9239

    Article  CAS  Google Scholar 

  54. Li Y, Liu H, Song C, Gu X, Li H, Zhu W, Yin S, Han C (2013) The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid. Bioresour Technol 133:347–353

    Article  CAS  Google Scholar 

  55. Aellig C, Hermans I (2012) Continuous D-fructose dehydration to 5- hydroxymethylfurfural under mild conditions. ChemSusChem 5:1737–1742

    Article  CAS  Google Scholar 

  56. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci U S A 107:4516–4521

    Article  CAS  Google Scholar 

  57. Bao Q, Qiao K, Tomida D, Yokoyama C (2008) Preparation of 5-hydroxymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid. Catal Commun 9:1383–1388

    Article  CAS  Google Scholar 

  58. Sidhpuria KB, Daniel da Silva AL, Trindade T, Coutinho JAP (2011) Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Green Chem 13:340–349

    Article  CAS  Google Scholar 

  59. Lee YY, Wu KCW (2012) Conversion and kinetics study of fructose-to-5-hydroxymethylfurfural (HMF) using sulfonic and ionic liquid groups bi-functionalized mesoporous silica nanoparticles as recyclable solid catalysts in DMSO systems. PCCP 14:13914–13917

    Article  CAS  Google Scholar 

  60. Shi XL, Zhang M, Li Y, Zhang W (2013) Polypropylene fiber supported ionic liquids for the conversion of fructose to 5-hydroxymethylfurfural under mild conditions. Green Chem 15:3438–3445

    Article  CAS  Google Scholar 

  61. Yuan J, Antonietti M (2011) Poly (ionic liquid) s: polymers expanding classical property profiles. Polymer 52:1469–1482

    Article  CAS  Google Scholar 

  62. Li H, Zhang Q, Liu X, Chang F, Zhang Y, Xue W, Yang S (2013) Immobilizing Cr3+ with SO3H-functionalized solid polymeric ionic liquids as efficient and reusable catalysts for selective transformation of carbohydrates into 5-hydroxymethylfurfural. Bioresour Technol 144:21–27

    Article  CAS  Google Scholar 

  63. Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H (2005) Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: relationship between reactivity and acid–base property determined by TPD measurement. Appl Catal Gen 295:150–156

    Article  CAS  Google Scholar 

  64. Qi X, Watanabe M, Aida TM, Smith RL Jr (2008) Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal Commun 9:2244–2249

    Article  CAS  Google Scholar 

  65. McNeff CV, Nowlan DT, McNeff LC, Yan B, Fedie RL (2010) Continuous production of 5-hydroxymethylfurfural from simple and complex carbohydrates. Appl Catal Gen 384:65–69

    Article  CAS  Google Scholar 

  66. Yan H, Yang Y, Tong D, Xiang X, Hu C (2009) Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4 2−/ZrO2 and SO4 2−/ZrO2–Al2O3 solid acid catalysts. Catal Commun 10:1558–1563

    Article  CAS  Google Scholar 

  67. Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catal Commun 10:1771–1775

    Article  CAS  Google Scholar 

  68. Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K (2014) Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfurfural (5-HMF) production from glucose. Catal Sci Technol 4:333–342

    Article  CAS  Google Scholar 

  69. Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA (2012) Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system. ChemSusChem 5:1812–1819

    Article  CAS  Google Scholar 

  70. Benvenuti F, Carlini C, Patrono P, Raspolli Galletti AM, Sbrana G, Massucci MA, Galli P (2000) Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl Catal Gen 193:147–153

    Article  CAS  Google Scholar 

  71. De S, Dutta S, Patra AK, Bhaumik A, Saha B (2011) Self-assembly of mesoporous TiO2 nanospheres via aspartic acid templating pathway and its catalytic application for 5-hydroxymethyl-furfural synthesis. J Mater Chem 21:17505–17510

    Article  CAS  Google Scholar 

  72. Dutta S, De S, Patra AK, Sasidharan M, Bhaumik A, Saha B (2011) Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles. Appl Catal Gen 409–410:133–139

    Article  CAS  Google Scholar 

  73. Dutta A, Patra AK, Dutta S, Saha B, Bhaumik A (2012) Hierarchically porous titanium phosphate nanoparticles: an efficient solid acid catalyst for microwave assisted conversion of biomass and carbohydrates into 5-hydroxymethylfurfural. J Mater Chem 22:14094–14100

    Article  CAS  Google Scholar 

  74. Carlini C, Giuttari M, Maria Raspolli Galletti A, Sbrana G, Armaroli T, Busca G (1999) Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts. Appl Catal Gen 183:295–302

    Article  CAS  Google Scholar 

  75. Armaroli T, Busca G, Carlini C, Giuttari M, Raspolli Galletti AM, Sbrana G (2000) Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A Chem 151:233–243

    Article  CAS  Google Scholar 

  76. Yang F, Liu Q, Bai X, Du Y (2011) Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Bioresour Technol 102:3424–3429

    Article  CAS  Google Scholar 

  77. Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem Commun 47:4469–4471

    Article  CAS  Google Scholar 

  78. Dutta A, Gupta D, Patra AK, Saha B, Bhaumik A (2014) Synthesis of 5-hydroxymethylfurfural from carbohydrates using large-pore mesoporous tin phosphate. ChemSusChem 7:925–933

    Article  CAS  Google Scholar 

  79. Tian C, Zhu X, Chai SH, Wu Z, Binder A, Brown S, Li L, Luo H, Guo Y, Dai S (2014) Three-phase catalytic system of H2O, ionic liquid, and VOPO4–SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural. ChemSusChem 7:1703–1709

    Article  CAS  Google Scholar 

  80. Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenergy 35:2659–2665

    Article  CAS  Google Scholar 

  81. Zhang Y, Degirmenci V, Li C, Hensen EJM (2011) Phosphotungstic acid encapsulated in metal–organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural. ChemSusChem 4:59–64

    Article  CAS  Google Scholar 

  82. Moliner M, Roman-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci U S A 107:6164–6168

    Article  CAS  Google Scholar 

  83. Yang BY, Montgomery R (1996) Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydr Res 280:27–45

    Article  CAS  Google Scholar 

  84. De Wit G, Kieboom APG, van Bekkum H (1979) Enolisation and isomerisation of monosaccharides in aqueous, alkaline solution. Carbohydr Res 74:157–175

    Article  Google Scholar 

  85. de Bruyn CAL, van Ekenstein WA (1895) Action des alcalis sur les sucres, II. Transformation réciproque des uns dans les autres des sucres glucose, fructose et mannose. Recl Trav Chim Pays-Bas 14:203–216

    Article  Google Scholar 

  86. de Bruijn JM, Kieboom APG, van Bekkum H (1987) Alkaline degradation of monosaccharides V: kinetics of the alkaline isomerization and degradation of monosaccharides. Recl Trav Chim Pays-Bas 106:35–43

    Article  Google Scholar 

  87. De Bruijn JM, Kieboom APG, van Bekkum H (1987) Alkaline degradation of monosaccharides part VII. A mechanistic picture. Starch – Stärke 39:23–28

    Article  Google Scholar 

  88. Moreau C, Durand R, Roux A, Tichit D (2000) Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites. Appl Catal Gen 193:257–264

    Article  CAS  Google Scholar 

  89. Yu S, Kim E, Park S, Song IK, Jung JC (2012) Isomerization of glucose into fructose over Mg–Al hydrotalcite catalysts. Catal Commun 29:63–67

    Article  CAS  Google Scholar 

  90. Román-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1:1566–1580

    Article  CAS  Google Scholar 

  91. Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) “One-Pot” synthesis of 5-(Hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1:408–410

    Article  CAS  Google Scholar 

  92. Yuriy Roman-Leshkov MM, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957

    Article  CAS  Google Scholar 

  93. Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang S-J, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109:9727–9732

    Article  CAS  Google Scholar 

  94. Rai N, Caratzoulas S, Vlachos DG (2013) Role of silanol group in Sn-beta zeolite for glucose isomerization and epimerization reactions. ACS Catal 3:2294–2298

    Article  CAS  Google Scholar 

  95. Li Y-P, Head-Gordon M, Bell AT (2014) Analysis of the reaction mechanism and catalytic activity of metal-substituted beta zeolite for the isomerization of glucose to fructose. ACS Catal 4:1537–1545

    Article  CAS  Google Scholar 

  96. Gounder R, Davis ME (2013) Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. J Catal 308:176–188

    Article  CAS  Google Scholar 

  97. Nagorski RW, Richard JP (2001) Mechanistic imperatives for aldose−ketose isomerization in water: specific, general base- and metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer. J Am Chem Soc 123:794–802

    Article  CAS  Google Scholar 

  98. Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572

    Article  CAS  Google Scholar 

  99. Qi X, Watanabe M, Aida TM, Smith RL (2012) Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Biomass Bioenergy 109:224–228

    CAS  Google Scholar 

  100. Ordomsky VV, Sushkevich VL, Schouten JC, van der Schaaf J, Nijhuis TA (2013) Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts. J Catal 300:37–46

    Article  CAS  Google Scholar 

  101. Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA (2013) Glucose dehydration to 5-hydroxymethylfurfural in a biphasic system over solid acid foams. ChemSusChem 6:1697–1707

    Article  CAS  Google Scholar 

  102. Nakajima K, Baba Y, Noma R, Kitano M, N. Kondo J, Hayashi S, Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant lewis acid sites. J Am Chem Soc 133:4224–4227

    Article  CAS  Google Scholar 

  103. Kitano M, Nakajima K, Kondo JN, Hayashi S, Hara M (2010) Protonated titanate nanotubes as solid acid catalyst. J Am Chem Soc 132:6622–6623

    Article  CAS  Google Scholar 

  104. Xiong H, Pham HN, Datye AK (2013) A facile approach for the synthesis of niobia/carbon composites having improved hydrothermal stability for aqueous-phase reactions. J Catal 302:93–100

    Article  CAS  Google Scholar 

  105. Xiong H, Wang T, Shanks BH, Datye AK (2013) Tuning the location of niobia/carbon composites in a biphasic reaction: dehydration of d-glucose to 5-hydroxymethylfurfural. Catal Lett 143:509–516

    Article  CAS  Google Scholar 

  106. Hu L, Wu Z, Xu J, Sun Y, Lin L, Liu S (2014) Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chem Eng J 244:137–144

    Article  CAS  Google Scholar 

  107. Wang J, Ren J, Liu X, Xi J, Xia Q, Zu Y, Lu G, Wang Y (2012) Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chem 14:2506–2512

    Article  CAS  Google Scholar 

  108. de Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JF, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. J Am Chem Soc 134:10089–10101

    Article  CAS  Google Scholar 

  109. Hu L, Zhao G, Tang X, Wu Z, Xu J, Lin L, Liu S (2013) Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid. Bioresour Technol 148:501–507

    Article  CAS  Google Scholar 

  110. Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem Commun 41:6276–6278

    Article  CAS  Google Scholar 

  111. Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) One-pot synthesis of 2, 5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal 1:1562–1565

    Article  CAS  Google Scholar 

  112. Wang L, Wang H, Liu F, Zheng A, Zhang J, Sun Q, Lewis JP, Zhu L, Meng X, Xiao FS (2014) Selective catalytic production of 5-hydroxymethylfurfural from glucose by adjusting catalyst wettability. ChemSusChem 7:402–406

    Article  CAS  Google Scholar 

  113. Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J Phys Chem C 113:3181–3188

    Article  CAS  Google Scholar 

  114. Suganuma S, Nakajima K, Kitano M, Hayashi S, Hara M (2012) sp(3) -linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst. ChemSusChem 5:1841–1846

    Article  CAS  Google Scholar 

  115. Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52:801–807

    Article  CAS  Google Scholar 

  116. Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037

    Article  CAS  Google Scholar 

  117. Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937

    Article  CAS  Google Scholar 

  118. Dhepe PL, Ohashi M, Inagaki S, Ichikawa M, Fukuoka A (2005) Hydrolysis of sugars catalyzed by water-tolerant sulfonated mesoporous silicas. Catal Lett 102:163–169

    Article  CAS  Google Scholar 

  119. D-m L, Deng L, Li J, Liao B, Guo Q-x, Fu Y (2011) Hydrolysis of cellulose into glucose by magnetic solid acid. ChemSusChem 4:55–58

    Article  CAS  Google Scholar 

  120. Xiong Y, Zhang Z, Wang X, Liu B, Lin J (2014) Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst. Chem Eng J 235:349–355

    Article  CAS  Google Scholar 

  121. Takagaki A, Nishimura M, Nishimura S, Ebitani K (2011) Hydrolysis of sugars using magnetic silica nanoparticles with sulfonic acid groups. Chem Lett 40:1195–1197

    Article  CAS  Google Scholar 

  122. Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12:1560–1563

    Article  CAS  Google Scholar 

  123. Tagusagawa C, Takagaki A, Takanabe K, Ebitani K, Hayashi S, Domen K (2009) Effects of transition-metal composition of protonated, layered nonstoichiometric oxides H1−xNb1−xMo1+xO6 on heterogeneous acid catalysis. J Phys Chem C 113:17421–17427

    Article  CAS  Google Scholar 

  124. Tagusagawa C, Takagaki A, Takanabe K, Ebitani K, Hayashi S, Domen K (2010) Layered and nanosheet tantalum molybdate as strong solid acid catalysts. J Catal 270:206–212

    Article  CAS  Google Scholar 

  125. Tagusagawa C, Takagaki A, Iguchi A, Takanabe K, Kondo JN, Ebitani K, Hayashi S, Tatsumi T, Domen K (2010) Highly active mesoporous Nb–W oxide solid-acid catalyst. Angew Chem Int Ed 49:1128–1132

    Article  CAS  Google Scholar 

  126. Tagusagawa C, Takagaki A, Iguchi A, Takanabe K, Kondo JN, Ebitani K, Tatsumi T, Domen K (2010) Synthesis and characterization of mesoporous Ta−W oxides as strong solid acid catalysts. Chem Mater 22:3072–3078

    Article  CAS  Google Scholar 

  127. von Rybinski W, Hill K (1998) Alkyl polyglycosides—properties and applications of a new class of surfactants. Angew Chem Int Ed 37:1328–1345

    Article  Google Scholar 

  128. Jeffrey GA (1986) Carbohydrate liquid crystals. Acc Chem Res 19:168–173

    Article  CAS  Google Scholar 

  129. Fischer E (1893) Ueber die Glucoside der Alkohole. Eur J Inorg Chem 26:2400–2412

    Google Scholar 

  130. van der Heijden AM, Lee TC, van Rantwijk F, van Bekkum H (2002) Glycosidation of fructose-containing disaccharides using MCM-41 material as the catalyst. Carbohydr Res 337:1993–1998

    Article  Google Scholar 

  131. Biermann M, Schmid K, Schulz P (1993) Alkylpolyglucoside – technologie und eigenschaften. Starch – Stärke 45:281–288

    Article  CAS  Google Scholar 

  132. Ishikawa Y, Saka S (2001) Chemical conversion of cellulose as treated in supercritical methanol. Cellulose 8:189–195

    Article  CAS  Google Scholar 

  133. Deng W, Liu M, Zhang Q, Tan X, Wang Y (2010) Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chem Commun 46:2668–2670

    Article  CAS  Google Scholar 

  134. Villandier N, Corma A (2010) One pot catalytic conversion of cellulose into biodegradable surfactants. Chem Commun 46:4408–4410

    Article  CAS  Google Scholar 

  135. Ignatyev IA, Mertens PGN, Van Doorslaer C, Binnemans K, de Vos DE (2010) Cellulose conversion into alkylglycosides in the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chem 12:1790–1795

    Article  CAS  Google Scholar 

  136. Pinzi S, Garcia I, Lopez-Gimenez F, Luque de Castro M, Dorado G, Dorado M (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels 23:2325–2341

    Article  CAS  Google Scholar 

  137. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    Article  CAS  Google Scholar 

  138. Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672–679

    Article  CAS  Google Scholar 

  139. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    Article  CAS  Google Scholar 

  140. Rinaldi R, Palkovits R, Schuth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tai, Z., Lee, A.F., Wilson, K. (2016). Progress in the Development of Mesoporous Solid Acid and Base Catalysts for Converting Carbohydrates into Platform Chemicals. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-688-1_6

Download citation

Publish with us

Policies and ethics