Skip to main content
Log in

Atomic Scale Foundation of Covalent and Acid–Base Catalysis in Reaction Selectivity and Turnover Rate

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Modern industrial catalysts are highly engineered multi-component materials, which are optimized to be highly efficient for the given reaction. The key components of every catalyst are: (1) the active metal and (2) the support. The former is active through the formation of covalent bonds with surface species, activating the bonds in the targeted molecule. In many systems the support is a metal oxide, which can promote charged intermediates in acid–base type catalytic chemistry. When the covalent chemistry of the metal catalyst and the acid–base chemistry of the support work together, the overall catalytic productivity can be much greater than the sum of the parts. This synergic interaction also works in favor of changes in the selectivity of complex reactions. This intent of this article is to analyze covalent metal catalysis both alone and in tandem with acid–base heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Somorjai GA, Li Y (2008) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  2. Ertl G, Knozinger H, Weitkamp J (2008) Handbook of heterogeneous catalysis. Wiley, New York

    Book  Google Scholar 

  3. Somorjai GA (2000) J Phys Chem B 104:2969

    Article  CAS  Google Scholar 

  4. Boudart M (1995) Chem Rev 95:661

    Article  CAS  Google Scholar 

  5. Musselwhite N, Alayoglu S, Melaet G, Pushkarev VV, Lindeman AE, An K, Somorjai GA (2013) Catal Lett 143:907

    Article  CAS  Google Scholar 

  6. Na K, Musselwhite N, Cai X, Alayoglu S, Somorjai GA (2014) J Phys Chem A 118:8446

  7. Melaet G, Ralston WT, Li CS, Alayoglu S, An K, Musselwhite N, Kalkan B, Somorjai GA (2014) J Am Chem Soc 136:2260

    Article  CAS  Google Scholar 

  8. An K, Alayoglu S, Musselwhite N, Na K, Somorjai GA (2014) J Am Chem Soc 136:6830

    Article  CAS  Google Scholar 

  9. An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman A, Somorjai GA (2013) J Am Chem Soc 135:16689

  10. Ertl G, Freund HJ (1999) Phys Today 52:32

    Article  CAS  Google Scholar 

  11. Campbell CT (1997) Surf Sci Rep 27:1

    Article  CAS  Google Scholar 

  12. Freund HJ, Kuhlenbeck H, Libuda J, Rupprechter G, Baumer M, Hamann H (2001) Top Catal 15:201

    Article  CAS  Google Scholar 

  13. Somorjai GA, Park JY (2008) J Phys Chem 128:182504

    Article  Google Scholar 

  14. Weckhuysen BM (2002) Chem Commun 2:97

    Article  Google Scholar 

  15. Tinnemans SJ, Mesu JG, Kervinen K, Visser T, Nijhuis TA, Beale AM, Keller DE, van der Eerden AMJ, Weckhuysen BM (2006) Catal Today 113:3

    Article  CAS  Google Scholar 

  16. Alayoglu S, Krier JM, Michalak WD, Zhu Z, Gross E, Somorjai GA (2012) ACS Catal 2:2250

    Article  CAS  Google Scholar 

  17. Somorjai GA, Aliaga C (2010) Langmuir 26:16190

    Article  CAS  Google Scholar 

  18. Su XC, Cremer P, Shen YR, Somorjai GA (1997) J Am Chem Soc 119:3994

    Article  CAS  Google Scholar 

  19. Somorjai GA, McCrea KR (2000) Adv Cat 45:385

    Article  CAS  Google Scholar 

  20. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589

    Article  CAS  Google Scholar 

  21. Zhu J, Somorjai GA (2001) Nano Lett 1:8

    Article  CAS  Google Scholar 

  22. Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang PD, Somorjai GA (2005) J Am Chem Soc 128:307

    Google Scholar 

  23. Konya Z, Puntes VF, Kiriesi I, Zhu J, Alivisatos AP, Somorjai GA (2002) Nano Lett 2:907

    Article  CAS  Google Scholar 

  24. Rioux RD, Song H, Hoefelmeyer JD, Yang PD, Somorjai GA (2005) J Phys Chem B 109:2192

    Article  CAS  Google Scholar 

  25. Asscher M, Somorjai GA (1984) Surf Sci 143:389

    Article  Google Scholar 

  26. Asscher M, Carrazza J, Khan M, Lewis K, Somorjai GA (1986) J Catal 98:277

    Article  CAS  Google Scholar 

  27. Geerlings JJC, Wilson JH, Kramer GJ, Kuipers HPCE, Hoek A, Huisman HM (1999) Appl Catal A 186:27

    Article  CAS  Google Scholar 

  28. Oosterbeek H (2007) Phys Chem Chem Phys 9:3570

    Article  CAS  Google Scholar 

  29. Davis SM, Somorjai GA (1982) Hydrocarbon conversion over metal catalysts, in The chemical physics of solid surfaces and heterogeneous catalysis: Fundamental studies of heterogeneous catalysis, vol 4. Elsevier, Amsterdam

    Google Scholar 

  30. Goodman DW (1982) Surf Sci 123:679

    Article  Google Scholar 

  31. Strongin DR, Carrazza J, Bare SR, Somorjai GA (1987) J Catal 103:289

    Article  CAS  Google Scholar 

  32. Strongin DR, Somorjai GA (1991) Catalytic ammonia synthesis: fundamentals and practice. Plenum, New York

    Google Scholar 

  33. Goodman DW (1986) Ann Rev Phys Chem 37:425

    Article  CAS  Google Scholar 

  34. Sachtler JWA, Somorjai GA (1983) J Catal 81:77

    Article  CAS  Google Scholar 

  35. Stair PC, Somorjai GA (1977) J. Chem. Phys 66:2036

    Article  CAS  Google Scholar 

  36. Gland JL, Somorjai GA (1973) Surf Sci 38:157

    Article  CAS  Google Scholar 

  37. Boudart M (1969) Adv Catal 20:153

    CAS  Google Scholar 

  38. Boudart M, Djéga-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton

    Book  Google Scholar 

  39. Musselwhite N, Somorjai GA (2013) Top Catal 56:1277

    Article  CAS  Google Scholar 

  40. Guthrie WL, Sokol JD, Somorjai GA (1981) Surf Sci 109:390

    Article  CAS  Google Scholar 

  41. Engstrom JR, Goodman DW, Weinberg WH (1990) J Am Chem Soc 94:396

  42. Gillespie WD, Herz RK, Peterson EE, Somorjai GA (1981) J Catal 70:147

    Article  CAS  Google Scholar 

  43. Ferrer S, Rojo JM, Salmeron M, Somorjai GA (1982) Phil Mag A 45:261

    Article  CAS  Google Scholar 

  44. Koel BE, White JM, Goodman DW (1982) Chem Phys Lett 88:236

    Article  CAS  Google Scholar 

  45. Lin TH, Somorjai GA (1981) Surf Sci 107:573

    Article  CAS  Google Scholar 

  46. Lin TH, Somorjai GA (1984) J Phys Chem 81:704

    Article  CAS  Google Scholar 

  47. Lin TH, Somorjai GA (1985) J Phys Chem 89:135

    Article  CAS  Google Scholar 

  48. Van Hove MA, Somorjai GA (1988) Catal Lett 1:433

    Article  Google Scholar 

  49. Falicov LM, Somorjai GA (1985) Proc Natl Acad Sci USA 82:2207

    Article  CAS  Google Scholar 

  50. Somorjai GA (1995) Prog Surf Sci 50:1

    Article  Google Scholar 

  51. Tao F, Dag S, Wang LW, Liu Z, Butcher D, Bluhm H, Salmeron M, Somorjai GA (2010) Science 327:850

    Article  CAS  Google Scholar 

  52. Zhu Z, Melaet G, Axnanda S, Alayoglu S, Liu Z, Salmeron M, Somorjai GA (2013) J Am Chem Soc 135:12560

    Article  CAS  Google Scholar 

  53. Pushkarev VV, An K, Alayoglu S, Beaumont SK, Somorjai GA (2012) J Catal 292:64

    Article  CAS  Google Scholar 

  54. Pushkarev VV, Musselwhite N, An K, Alayoglu S, Somorjai GA (2012) Nano Lett 12:5196

    Article  CAS  Google Scholar 

  55. Schwab GM, Koller K (1968) J Am Chem Soc 90:3078

    Article  CAS  Google Scholar 

  56. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  57. Tauster SJ, Fung SC (1978) J Catal 55:29

    Article  CAS  Google Scholar 

  58. Tauster SJ (1987) Acc Chem Res 20:389

    Article  CAS  Google Scholar 

  59. Ko EI, Garten RL (1981) J Catal 68:223

  60. Boffa A, Lin C, Bell AT, Somorjai GA (1994) J Catal 149:149

    Article  CAS  Google Scholar 

  61. Gunter PLJ, Niemantsverdriet JW, Ribiero FH, Somorjai GA (1997) Catal Rev Sci Eng 39:77

    Article  CAS  Google Scholar 

  62. Boffa AB, Galloway H, Jacobs PW, Benitez J, Batteas J, Salmeron M, Bell AT, Somorjai GA (1995) Surf Sci 326:80

    Article  CAS  Google Scholar 

  63. Boffa A, Lin C, Bell AT, Somorjai GA (1994) Catal Lett 27:243

    Article  CAS  Google Scholar 

  64. Bernal S, Kaspar J, Trovarelli A (1999) Catal Today 50:173

    Article  CAS  Google Scholar 

  65. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:235

    Article  Google Scholar 

  66. Vannice MA, Wang SY, Moon SH (1981) J Catal 71:152

    Article  CAS  Google Scholar 

  67. Park JY, Somorjai GA (2006) Chem Phys Chem 7:1409

    CAS  Google Scholar 

  68. Park JY, Renzas JR, Contreras AM, Somorjai GA (2007) Top Catal 46:217

    Article  CAS  Google Scholar 

  69. Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Nano Lett 9:3930

    Article  CAS  Google Scholar 

  70. Baker LR, Hervier A, Kennedy G, Somorjai GA (2012) Nano Lett 5:2554

    Article  Google Scholar 

  71. Koningsberger DC, de Graaf J, Mojet BL, Ramaker DE, Miller JT (1999) App Catal C 191:205

    Article  Google Scholar 

  72. Holm MS, Taarning E, Egeblad K, Christensen CH (2011) Catal Today 168:3

    Article  CAS  Google Scholar 

  73. Tourinho R, Oliviera I, Arroyo P, Claudio M (2011) Catal Lett 141:1472

    Article  CAS  Google Scholar 

  74. Smirniotis PG, Ruckenstein E (1992) Catal Lett 17:341

    Article  Google Scholar 

  75. Karge HG, Weitkamp J (1989) Zeolites as catalysts. Sorbents and Detergent Builders, Elsevier

    Google Scholar 

  76. Prasada Rao TSR, Murali Dhar G (1998) Recent advances in basic and applied aspects of industrial catalysis. Elsevier, New York

    Google Scholar 

  77. Naito S, Aida S, Tsunematsu T, Miyao T (1998) Chem Letts 10:946

    Google Scholar 

  78. Yoon K, Yang Y, Lu P, Wan D, Peng H, Stamm Masias K, Fanson PT, Campbell CT, Xia Y (2012) Angew Chem 51:9543

    Article  CAS  Google Scholar 

  79. Kennedy G, Baker LR, Somorjai GA (2013) Angew Chem Int Ed 126:3473

  80. Baker LR, Kennedy G, Van Spronsen M, Hervier A, Cai X, Chen S, Wang LW, Somorjai GA (2012) J Am Chem Soc 134:14208

Download references

Acknowledgments

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the US DOE under contract Contract No. DE-AC02-05CH11231. N. Musselwhite would like to thank the Chevron Energy Company for funding and Dr. Gérôme Melaet for useful collaborations and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musselwhite, N., Somorjai, G.A. Atomic Scale Foundation of Covalent and Acid–Base Catalysis in Reaction Selectivity and Turnover Rate. Top Catal 58, 184–189 (2015). https://doi.org/10.1007/s11244-014-0357-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0357-6

Keywords

Navigation