Skip to main content

Materials for Solid Catalysts

  • Chapter
Springer Handbook of Materials Data

Part of the book series: Springer Handbooks ((SHB))

Abstract

Catalysts are used to influence both the path and the rate of chemical reactions. This is achieved by controlling the reaction barriers in such a way that intended intermediates and products are formed. The two characteristic catalytic properties are activity and selectivity. The aim of catalyst development is to obtain a catalytically active material in such a way that it maximizes the reaction rate of the successive catalytic reaction steps up to the desired product. In addition, the catalysts have to remain chemically and mechanically stable and active under the reaction conditions for a long time to ensure an economic lifetime of the catalyst.

To achieve the desired properties catalyst development should not only focus on the components required, but also on the material's structure. The most important analytical tool in catalyst development is testing of catalytic activity, looking for the optimum combination of reactants, reaction conditions, and catalyst materials. Development may be mainly empiric, or supported by other techniques, like modeling, experimental design, and/or characterization of the catalyst material to achieve a more targeted approach and to establish a continuously growing knowledge pool for the specific catalytic reaction and process parameters.

This contribution considers the heterogeneous catalyst as a functional material and provides a short overview of its components, the material parameters used, and the characterization techniques available to determine these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Brand, H. Dübler, B. Engler, A. Freund, H. Lansink-Rotgerink, G. Prescher: Edelmetalle in der Katalyse. In: Edelmetalltaschenbuch, ed. by G. Beck, H.-H. Beyer, W. Gerhartz, J. Haußelt, U. Zimmer (Degussa AG, Heidelberg 1995) pp. 351–401

    Google Scholar 

  2. J. Gieshoff, B.W.L. Southward: Materials for heterogeneous catalysis. In: Precious Materials Handbook, ed. by U. Sehrt, M. Grehl (Umicore AG & Co KG, Hanau-Wolfgang 2012)

    Google Scholar 

  3. Degussa AG: Edelmetall-Taschenbuch (Degussa AG, Frankfurt 1967) p. 131

    Google Scholar 

  4. M. Haruta: Chance and necessity: My encounter with gold catalysts, Angew. Chem. Int. Ed. 53, 52–56 (2014)

    Article  CAS  Google Scholar 

  5. W. Vielstich, A. Lamm, H.A. Gasteiger (eds.): Handbook of Fuel Cells: Fundamentals, Technology and Applications, Vol. 3, Part 1 (Wiley, Chichester 2009) pp. 465–513

    Google Scholar 

  6. C. Hagelüken: Autoabgaskatalysatoren, 2nd edn. (Expert, Renningen 2005)

    Google Scholar 

  7. M. Raney: Method of Producing Finely-Devided Nickel, US Patent (Application) 1628190 (1927)

    Google Scholar 

  8. A.F. Holleman, E. Wiberg: Lehrbuch der Anorganischen Chemie (Walter de Gruyter, Berlin 1995)

    Google Scholar 

  9. B.C. Gates: Catalytic Chemistry (Wiley, New York 1992)

    Google Scholar 

  10. G. Ertl, H. Knözinger, J. Weitkamp: Preparation of Solid Catalysts (Wiley, Weinheim 1999)

    Book  Google Scholar 

  11. A.Y. Khodakov, W. Chu, P. Fongarland: Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 107, 1692–1744 (2007)

    Article  CAS  Google Scholar 

  12. P. Albers: Charakterisierung von Katalysatoren, Chem. Ing. Tech. 78, 835–849 (2006)

    Article  CAS  Google Scholar 

  13. H. Bremer, K.-P. Wendland: Heterogene Katalyse (Aka, Berlin 1978)

    Google Scholar 

  14. G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Eds.): Handbook of Heterogeneous Catalysis, Vol. 1–8 (Wiley-VCH, Weinheim 2008)

    Google Scholar 

  15. J.M. Thomas, W.J. Thomas: Principles and Practices of Heterogeneous Catalysis, 2nd edn. (Wiley-VCH, Weinheim 2014)

    Google Scholar 

  16. J.R. Anderson, M. Boudart (Eds.): Catalysis Science and Technology, Vol. 1–11 (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  17. B. Cornils, W.A. Herrmann, C.-H. Wong, H.-W. Zanthoff (Eds.): Catalysis from A to Z, 4th edn. (Wiley-VCH, Weinheim 2013)

    Google Scholar 

  18. G. Emig: Wirkungsweise und Einsatz von Katalysatoren, Chem. unserer Zeit 21, 128–137 (1987)

    Article  CAS  Google Scholar 

  19. G.A. Somorjai: Introduction to Surface Chemistry and Catalysis (Wiley, New York 1994)

    Google Scholar 

  20. A.A. Balandin: The multiplet theory of catalysis – Energy factors in catalysis, Russ. Chem. Rev. 33(5), 258 (1964)

    Article  Google Scholar 

  21. M. Valden, X. Lai, D.W. Goodman: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281, 1647 (1998)

    Article  CAS  Google Scholar 

  22. M.L. Sattler, P.N. Ross: The surface structure of Pt crystallites supported on carbon black, Ultramicroscopy 20, 21–28 (1986)

    Article  CAS  Google Scholar 

  23. P.N. Ross: Structure sensitivity in electrocatalytic properties of Pt: II. Oxygen reduction on low index single crystals and the role of steps, J. Electrochem. Soc. 126, 78–82 (1979)

    Article  CAS  Google Scholar 

  24. K. Kinoshita: Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes, J. Electrochem. Soc. 137, 845–848 (1990)

    Article  CAS  Google Scholar 

  25. R. van Hardeveld, F. Hartog: The statistics of surface atoms and surface sites on metal crystals, Surf. Sci. 15, 189–230 (1969)

    Article  Google Scholar 

  26. W. Bronger, W. Klemm: Darstellung von Legierungen des Platins mit unedlen Metallen, Z. Anorg. Allg. Chem. 319, 58–81 (1962)

    Article  CAS  Google Scholar 

  27. G.-F. Wei, Z.-P. Liu: Restructuring and hydrogen evolution on Pt nanoparticle, Chem. Sci. 6, 1485–1490 (2015)

    Article  CAS  Google Scholar 

  28. F. Roessner: Spillover effects. In: Handbook of Heterogeneous Catalysis, 2nd edn., Vol. 3, ed. by G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Wiley-VCH, Weinheim 2008) pp. 1574–1585

    Google Scholar 

  29. S.J. Tauster: Strong metal–support interactions, Acc. Chem. Res. 20(11), 389–394 (1987)

    Article  CAS  Google Scholar 

  30. H. Knözinger, E. Taglauer: Spreading and wetting. In: Preparation of Solid Catalysts, ed. by G. Ertl, H. Knözinger, J. Weitkamp (Wiley, Weinheim 1999) pp. 501–526

    Chapter  Google Scholar 

  31. K. Möbus, E. Grünewald, S. Wieland, S.F. Parker, P.W. Albers: Palladium-catalyzed selective hydrogenation of nitroarenes: Influence of platinum and iron on activity, particle morphology and formation of β-palladium hydride, J. Catal. 311, 153–160 (2014)

    Article  CAS  Google Scholar 

  32. A. Schröder, M. Klüppel, R.H. Schuster, J. Heidberg: Surface energy distribution of carbon black measured by static gas adsorption, Carbon 40, 207–210 (2002)

    Article  Google Scholar 

  33. B. Beguin: Stabilization of alumina by addition of lanthanum, Appl. Catal. 75(1), 18 (1991)

    Article  Google Scholar 

  34. J. Theis, U. Goebel, M. Wittrock, M. Kögel, T. Kreuzer: Nitrogen oxide storage material and nitrogen oxide storage catalyst produced therefrom (2005) Patent WO 2005092481A1

    Google Scholar 

  35. E. Wicke, H. Brodowsky: Hydrogen in palladium and palladium alloys. In: Hydrogen in Metals II – Application-Oriented Properties, Topics in Applied Physics, Vol. 29, ed. by G. Alefeld, J. Völkl (Springer, Berlin 1978) pp. 73–155

    Google Scholar 

  36. E. Raub: Platinmetalle. In: Gase und Kohlenstoff in Metallen, ed. by E. Fromm, E. Gebhard (Springer, Berlin 1976) pp. 636–656

    Chapter  Google Scholar 

  37. P.W. Albers, D. Lennon, S.F. Parker: Catalysis. In: Neutron Scattering: Applications in Chemistry, Materials Science and Biology, Experimental Methods in the Physical Science, Vol. 49, ed. by F. Fernandez-Alonso, D.L. Price (Academic Elsevier, Oxford 2017)

    Google Scholar 

  38. K. Ruth, M. Hayes, R. Burch, S. Tsubota, M. Haruta: The effects of SO2 on the oxidation of CO and propane on supported Pt and Au catalysts, Appl. Catal. B 24, L133–L138 (2000)

    Article  CAS  Google Scholar 

  39. R. Burch, E. Halpin, M. Hayes, K. Ruth, J.A. Sullivan: The nature of activity enhancement for propane oxidation over supported Pt catalysts exposed to sulphur dioxide, Appl. Catal. B 19, 199–207 (1998)

    Article  CAS  Google Scholar 

  40. W. Williamson, J. Perry, R. Goss, H. Gandhi: Catalyst deactivation due to glaze formation from oil-derived phosphorus and zinc, SAE Tech. Paper 841406 (1984)

    Google Scholar 

  41. B. Angelé, K. Kirchner: The poisoning of noble metal catalysts by phosphorus compounds – I Chemical processes, mechanisms and changes in the catalyst, Chem. Eng. Sci. 35(10), 2089–2091 (1980)

    Article  Google Scholar 

  42. P.W. Albers, S.F. Parker: Inelastic incoherent neutron scattering in catalysis research. In: Advances in Catalysis, Vol. 51, ed. by B.C. Gates, H. Knözinger (Academic, London 2007) pp. 99–132

    Google Scholar 

  43. P.W. Albers, J. Weitkamp: Carbonaceous deposits. In: Handbook of Heterogeneous Catalysis, 2nd edn., ed. by G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Wiley-VCH, Weinheim 2008) pp. 197–217

    Google Scholar 

  44. P.W. Albers, K. Möbus, C.D. Frost, S.F. Parker: Characterisation of beta palladium hydride formation in the Lindlar catalyst and on carbon supported palladium, J. Phys. Chem. C 115, 24485–24493 (2011)

    Article  CAS  Google Scholar 

  45. P.W. Albers, H. Angert, G. Prescher, K. Seibold, S.F. Parker: Catalyst poisoning by methyl groups, Chem. Commun. 17, 1619–1620 (1999)

    Article  Google Scholar 

  46. J.T. Richardson: Principles of Catalyst Development (Plenum, New York 1989)

    Book  Google Scholar 

  47. H. Schulz: Major and minor reactions in Fischer–Tropsch synthesis on cobalt catalysts, Top. Catal. 26(1), 73–85 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Ruth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Ruth, K., Albers, P. (2018). Materials for Solid Catalysts. In: Warlimont, H., Martienssen, W. (eds) Springer Handbook of Materials Data. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-69743-7_25

Download citation

Publish with us

Policies and ethics