Skip to main content
Log in

Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO2 and H2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

CO2 hydrogenation to methanol and to other alcohols constitutes an appealing route to recycle the large amount accumulated in the atmosphere through fossil-derived fuels burning. However, CO2 high chemical stability makes the overall process difficult and appropriate catalysts are needed. Transition metal carbides, either as active phase or as a support for noble metal clusters, have been shown to be able to activate CO2. Here, the mechanism involved in the decomposition of H2 and CO2 on many early transition metal carbides (TMC) surfaces is analyzed with the help of density functional theory (DFT) based calculations complemented by key experiments. Results show that H2 dissociation on VC and δ-MoC is unlikely, that TiC and ZrC are more reactive leading to an exothermic but activated process and that the C:Mo ratio is determinant factor since H2 dissociation on β-Mo2C(001) surface is even more exothermic. The DFT based calculations also show that CO2 adsorption on TMC results in an activated species with TMC → CO2 charge transfer, C–O bond elongations and OCO bending. Supporting Cu4 and Au4 clusters on TMCs(001) surfaces leads to more active catalysts due to the induced charge polarization. For H2 dissociation, TiC appears to be the best support, enhancing both H2 thermodynamics and kinetics. CO2 is strongly adsorbed on supported Cu4 and Au4 clusters, and the adsorption energy strength correlates with the methanol formation rate: Cu4/TiC(001) > Au4/TiC(001) > Cu/ZnO(001) ≫ Cu(111), thus providing potential alternative catalysts for methanol synthesis, in principle dozens of times better than commercial Cu/ZnO based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karl TR, Trenberth KE (2003) Science 302:1719

    Article  CAS  Google Scholar 

  2. U.E.I. Administration (2013) International energy outlook 2013, Washington DC. http://www.eia.gov/forecasts/ieo/pdf/0484%282013%29.pdf

  3. Preti D, Resta C, Squarcialupi S, Fachinetti G (2011) Angew Chem Int Ed 50:12551

    Article  CAS  Google Scholar 

  4. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) Science 336:893

    Article  CAS  Google Scholar 

  5. Ansari M, Min BH, Mo YH, Park SE (2011) Green Chem 13:1416

    Article  CAS  Google Scholar 

  6. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, New York

    Book  Google Scholar 

  7. White SP, Allis RG, Moore J, Chidsey T, Morgan C, Gwynn W, Adams M (2005) Chem Geol 217:387

    Article  CAS  Google Scholar 

  8. Viñes F, Borodin A, Höfft O, Kempter V, Illas F (2005) Phys Chem Chem Phys 7:386

    Article  Google Scholar 

  9. Habas MP, Mele F, Sodupe M, Illas F (1999) Surf Sci 431:208

    Article  CAS  Google Scholar 

  10. Lin J, Din Z, Hou Y, Wang X (2013) Sci Rep 3:1056

    Google Scholar 

  11. Fernández-García M, Anderson JA (2003) Supported metals in catalysis, catalytic sciences series, vol 5. Imperial College Press, London

    Google Scholar 

  12. French SA, Sokol AA, Bromley ST, Catlow CRA, Rogers SC, King F, Sherwood P (2001) Angew Chem Int Ed 40:4437

    Article  CAS  Google Scholar 

  13. Yoshihara J, Campbell CT (1996) J Catal 161:776

    Article  CAS  Google Scholar 

  14. Yang Y, White MG, Liu P (2012) J Phys Chem C 116:248

    Article  CAS  Google Scholar 

  15. Waugh KC (1992) Catal Today 15:51

    Article  CAS  Google Scholar 

  16. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Appl Catal 30:333

    Article  CAS  Google Scholar 

  17. Lambert RM, Pacchioni G (2010) Chemisorption and reactivity on supported clusters and thin films: towards an understanding of microscopic processes in catalysis, NATO Science Series

  18. Bäumer M, Freund HJ (1999) Prog Surf Sci 61:127

    Article  Google Scholar 

  19. Stacchiola DJ, Senanayake SD, Liu L, Rodriguez JA (2013) Chem Rev 113:4373

    Article  CAS  Google Scholar 

  20. Thomas JM, Thomas WJ (1996) Principles and practice of heterogeneous catalysis. Wiley-VCH, New York

    Google Scholar 

  21. Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) J Catal 307:162

    Article  CAS  Google Scholar 

  22. Vidal AB, Feria L, Evans J, Takahashi Y, Liu P, Nakamura K, Illas F, Rodriguez JA (2012) J Phys Chem Lett 3:2275

    Article  CAS  Google Scholar 

  23. Posada-Pérez S, Viñes F, Ramirez PJ, Vidal AB, Rodriguez JA, Illas F (2014) Phys Chem Chem Phys 16:14912

    Article  Google Scholar 

  24. Kubas GJ (2009) J Organomet Chem 694:2648

    Article  CAS  Google Scholar 

  25. Tøpsoe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis: science and technology. Springer, Berlin

    Google Scholar 

  26. Bond GC (1998) Heterogeneous catalysis: principles and applications, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  27. Iyngaran P, Madden DC, Jenkins SJ, King DA (2011) Proc Natl Acad Sci 108:925

    Article  CAS  Google Scholar 

  28. Claus P (1998) Top Catal 5:51

    Article  CAS  Google Scholar 

  29. Ouchaib T, Massardier J, Renouprez A (1989) J Catal 119:51

    Article  Google Scholar 

  30. Rodriguez JA, Liu P, Takahashi Y, Nakamura K, Viñes F, Illas F (2009) J Am Chem Soc 131:8595

    Article  CAS  Google Scholar 

  31. Rodriguez JA, Liu P, Takahashi Y, Nakamura K, Viñes F, Illas F (2010) Top Catal 53:393

    Article  CAS  Google Scholar 

  32. Corma A, Boronat M, González S, Illas F (2007) Chem Commun 3371

  33. Rodriguez JA, Viñes F, Illas F, Liu P, Takahashi Y, Nakamura K (2007) J Chem Phys 127:211102

    Article  CAS  Google Scholar 

  34. Toth LE (1971) Transition metal carbides and nitrides. Academic Press, New York

    Google Scholar 

  35. Oyama ST (1992) Catal Today 15:179

    Article  CAS  Google Scholar 

  36. Chorkendorff I, Niemantsverdriet JW (2007) Concepts of modern catalysis and kinetics, 2nd edn. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  37. Liu P, Rodriguez JA (2004) J Chem Phys 120:5414

    Article  CAS  Google Scholar 

  38. Viñes F, Sousa C, Liu P, Rodriguez JA, Illas F (2005) J Chem Phys 122:174709

    Article  Google Scholar 

  39. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2005) Catal Today 105:66

    Article  CAS  Google Scholar 

  40. Rodriguez JA, Illas F (2012) Phys Chem Chem Phys 14:427

    Article  CAS  Google Scholar 

  41. Rodriguez JA, Viñes F, Liu P, Illas F (2010) In: Rioux R (ed) Model systems in catalysis: from single crystal and size-selected clusters to supported enzyme mimics. Springler Verlag, New York, ISBN 978-0-387-98041-6, p 117

  42. Rodriguez JA, Liu P, Nakamura K, Illas F (2013) In: Avgouropoulos G, Tabakova T (eds) Environmental catalysis over gold-based materials. Royal Society of Chemistry, RSC Catalysis Series No. 13, ISBN: 978-1-84973-571-1

  43. Kresse G, Furthmüller J (1996) Phys Rev B: Condens Matter Mater Phys 54:11169

    Article  CAS  Google Scholar 

  44. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  46. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  47. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  48. Politi JRdS, Viñes F, Rodriguez JA, Illas F (2013) Phys Chem Chem Phys 15:12617

  49. Janthon P, Kozlov SM, Viñes F, Limtrakul J, Illas F (2013) J. Chem Theo Comput 9:1631

    Article  CAS  Google Scholar 

  50. Blöch PE (1994) Phys Rev B: Condens Matter Mater Phys 50:17953

    Article  Google Scholar 

  51. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  52. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  53. Silvi B, Savin A (1994) Nature 371:683

    Article  CAS  Google Scholar 

  54. Bader RF (1990) Atoms in molecules: a quantum theory. Oxford Science, Oxford

    Google Scholar 

  55. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  56. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  57. Feria L, Rodriguez JA, Jirsak T, Illas F (2011) J Catal 279:352

    Article  CAS  Google Scholar 

  58. Frantz PP, Didziulis SV (1998) Surf Sci 412/413:384

  59. Saint Clair TP, Oyama ST, Cox DF, Otani S, Ishizawa Y, Low RL, Fukui K, Iwasawa Y (1999) Surf Sci 426:187

  60. Chen JG (1996) Chem Rev 96:1447

    Google Scholar 

  61. Senanayake SD, Evans J, Agnoli S, Barrio L, Chen TL, Hrbek J, Rodriguez JA (2011) Top Catal 54:34

    Article  CAS  Google Scholar 

  62. Rodriguez JA, Kuhn M (1995) Surf Sci 330:L657

    Article  CAS  Google Scholar 

  63. Park JB, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, Nambu A, Sanz JF, Hrbek J, Rodriguez JA (2009) Proc Natl Acad Sci 106:4975

    Article  CAS  Google Scholar 

  64. Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Phys Chem Chem Phys 12:9909

    Article  CAS  Google Scholar 

  65. Yoshihara J, Parker SC, Schafer A, Campbell CT (1995) Catal Lett 31:313

    Article  CAS  Google Scholar 

  66. Levy RB, Boudart M (1973) Science 181:547

    Article  CAS  Google Scholar 

  67. Viñes F, Rodriguez JA, Liu P, Illas F (2008) J Catal 260:103

    Article  Google Scholar 

  68. Florez E, Gomez T, Liu P, Rodriguez JA, Illas F (2010) ChemCatChem 2:1219

    Article  CAS  Google Scholar 

  69. Edamoto K, Miyazaki E, Anazawa T, Mochida A, Kato H (1992) Surf Sci 169/170:389

  70. Florez E, Gomez T, Rodriguez JA, Illas F (2011) Phys Chem Chem Phys 13:6865

    Article  CAS  Google Scholar 

  71. Viñes F, Sousa C, Illas F, Liu P, Rodriguez JA (2007) J Phys Chem C 111:16982

    Article  Google Scholar 

  72. Viñes F, Sousa C, Illas F, Liu P, Rodriguez JA (2007) J Phys Chem C 111:1307

    Article  Google Scholar 

  73. Tominaga H, Nagai M (2005) Appl Catal A Gen 282:5

    Article  CAS  Google Scholar 

  74. Viñes F, Gomes JRB, Illas F (2014) Chem Soc Rev. doi:10.1039/C3CS60421G

    Google Scholar 

  75. Dubois JL, Sayama K, Arakawa H (1992) Chem Lett 21:5

    Article  Google Scholar 

  76. Wu SY, Ho JJ (2012) J Phys Chem C 116:13202

    Article  CAS  Google Scholar 

  77. Rodriguez JA, Clendening D, Campbell CT (1989) J Phys Chem 93:5238

    Article  CAS  Google Scholar 

  78. Wang T, Li YW, Wang J, Beller M, Jiao H (2014) J Phys Chem C 118:3162

    Article  CAS  Google Scholar 

  79. Rodriguez JA, Liu P, Viñes F, Illas F, Takahashi Y, Nakamura K (2008) Angew Chem Int Ed 120:6787

    Article  Google Scholar 

  80. Gomez T, Florez E, Rodriguez JA, Illas F (2011) J Phys Chem C 115:11666

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research carried out at the Universitat de Barcelona was supported by the Spanish MINECO grant CTQ2012-30751 grant and, in part, by Generalitat de Catalunya (Grants 2014SGR97 and XRQTC). The research carried out at BNL was supported by the U.S. Department of Energy, Chemical Sciences Division (DE-AC02-98CH10886). S.P.P acknowledges financial support from Spanish MEC predoctoral Grant associated to CTQ-2012-30751; F.V. thanks the MINECO for a postdoctoral Ramón y Cajal Grant (RYC-2012-10129); F.I. acknowledges additional support through the ICREA Academia award for excellence in research. Computational time at the MARENOSTRUM supercomputer has been provided by the Barcelona Supercomputing Centre through a Grant from Red Española de Supercomputación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Illas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posada-Pérez, S., Viñes, F., Rodriguez, J.A. et al. Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO2 and H2 . Top Catal 58, 159–173 (2015). https://doi.org/10.1007/s11244-014-0355-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0355-8

Keywords

Navigation