Skip to main content
Log in

Electrochemical Reduction of Aqueous Imidazolium on Pt(111) by Proton Coupled Electron Transfer

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Recent electrochemical studies have reported aqueous CO2 reduction to formic acid, formaldehyde and methanol at potentials of ca. −600 mV versus SCE, when using a Pt working electrode in acidic pyridine solutions. In those experiments, pyridinium is thought to function as a one-electron shuttle for the underlying multielectron reduction of CO2. DFT studies proposed that the critical step of the underlying reaction mechanism is the one-electron reduction of pyridinium at the Pt surface through proton coupled electron transfer. Such reaction forms a H adsorbate that is subsequently transferred to CO2 as a hydride, through a proton coupled hydride transfer mechanism where pyridinium functions as a Brønsted acid. Here, we find that imidazolium exhibits an electrochemical behavior analogous to pyridinium, as characterized by the experimental and theoretical analysis of the initial reduction on Pt. A cathodic wave, with a cyclic voltammetric half wave potential of ca. −680 mV versus SCE, is consistent with the theoretical prediction based on the recently proposed reaction mechanism suggesting that positively charged Brønsted acids could serve as electrocatalytic one-electron shuttle species for multielectron CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Annu Rev Phys Chem 63:541

    Article  CAS  Google Scholar 

  2. Benson EE, Sathrum AJ, Smieja JM, Kubiak CP (2009) Chem Soc Rev 38:89

    Article  CAS  Google Scholar 

  3. Costentin C, Robert M, Savéant J-M (2013) Chem Soc Rev 42:2423

    Article  CAS  Google Scholar 

  4. Barton CE, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) J Am Chem Soc 132:11539

    Article  Google Scholar 

  5. Morris AJ, McGibbon RT, Bocarsly AB (2011) ChemSusChem 4:191

    Article  CAS  Google Scholar 

  6. Barton EE, Rampulla DM, Bocarsly AB (2008) J Am Chem Soc 130:6342

    Article  CAS  Google Scholar 

  7. Kamrath MZ, Relph RA, Johnson MA (2010) J Am Chem Soc 132:15508

    Article  CAS  Google Scholar 

  8. Boston DJ, Xu C, Armstrong DW, MacDonnell FM (2013) J Am Chem Soc 135:16252

    Article  CAS  Google Scholar 

  9. Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) J Am Chem Soc 135:14020

    Article  CAS  Google Scholar 

  10. Keith JA, Carter EA (2012) J Am Chem Soc 134:7580

    Article  CAS  Google Scholar 

  11. Keith JA, Carter EA (2013) Chem Sci 4:1490

    Article  CAS  Google Scholar 

  12. Lim C-H, Holder AM, Musgrave CB (2012) J Am Chem Soc 135:142

    Article  Google Scholar 

  13. Ertem MZ, Konezny SJ, Araujo CM, Batista VS (2013) J Phys Chem Lett 4:745

    Article  CAS  Google Scholar 

  14. Barrette WC, Johnson HW, Sawyer DT (1890) Anal Chem 1984:56

    Google Scholar 

  15. Costentin C, Canales JC, Haddou B, Saveant J-M (2013) J Am Chem Soc 135:17671

    Article  CAS  Google Scholar 

  16. Canhoto C, Matos M, Rodrigues A, Geraldo MD, Bento MF (2004) J Electroanal Chem 570:63

    Article  CAS  Google Scholar 

  17. Peremans A, Tadjeddine A (1995) J Chem Phys 103:7197

    Article  CAS  Google Scholar 

  18. Tian Z-Q, Ren B (2004) Annu Rev Phys Chem 55:197

    Article  CAS  Google Scholar 

  19. Conway BE, Jerkiewicz G (2002) Solid State Ionics 150:93

    Article  CAS  Google Scholar 

  20. Ren B, Xu X, Li XQ, Cai WB, Tian ZQ (1999) Surf Sci 427–428:157

    Article  Google Scholar 

  21. Zolfaghari A, Chayer M, Jerkiewicz G (1997) J Electrochem Soc 144:3034

    Article  CAS  Google Scholar 

  22. Clavilier J, Armand D (1986) J Electroanal Chem Interfacial Electrochem 199:187

    Article  CAS  Google Scholar 

  23. Barber J, Morin S, Conway BE (1998) J Electroanal Chem 446:125

    Article  CAS  Google Scholar 

  24. Conway BE, Barber J, Morin S (1998) Electrochim Acta 44:1109

    Article  CAS  Google Scholar 

  25. Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK (2007) Phys Chem Chem Phys 9:3241

    Article  CAS  Google Scholar 

  26. Skulason E, Tripkovic V, Bjorketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jonsson H, Norskov JK (2010) J Phys Chem C 114:18182

    Article  CAS  Google Scholar 

  27. Nanbu N, Kitamura F, Ohsaka T, Tokuda K (2000) J Electroanal Chem 485:128

    Article  CAS  Google Scholar 

  28. Wiberg KB (1955) Chem Rev 55:713

    Article  CAS  Google Scholar 

  29. Oh Y, Hu X (2013) Chem Soc Rev 42:2253

    Article  CAS  Google Scholar 

  30. Morris AJ, Meyer GJ, Fujita E (1983) Acc Chem Res 2009:42

    Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  32. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys-Condens Matter 21:395

    Article  Google Scholar 

  33. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872

    Article  CAS  Google Scholar 

  34. Hehre WJ, Radom L, PvR Schleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT

  36. Cramer CJ (2004) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, Chichester

    Google Scholar 

  37. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phy Chem B 113:6378

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley and Sons Inc., New York

Download references

Acknowledgements

VSB acknowledges support from the AFOSR Grant# FA9550-13-1-0020 and supercomputing time from NERSC and from the high-performance computing facilities at Yale University. The authors thank M. Zahid Ertem for valuable discussions. ABB and KL acknowledges support from the Air Force Office of Scientific Research through the MURI program under AFOSR Award No. FA9550-10-1-0572 and the NSF under Award CHE-1308652.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew B. Bocarsly or Victor S. Batista.

Appendix

Appendix

The reduction potential of the Brønsted acid (HA = PyrH+, ImH+) relative to the SHE, is obtained as the cell potential for the equilibrium:

$${\text{AH}} \to {\text{A}}^{ - } + {\text{ H}}^{ + } ,$$
(1)

which can be expressed as two half reactions:

$${\text{AH }} + {\text{ e}} - \to {\text{A}}^{ - } + \, \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} {\text{ H}}_{ 2}$$
(2)

and

$$\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} {\text{ H}}_{ 2} \to {\text{H}}^{ + } + {\text{ e}} -$$
(3)

The Gibbs free energy change ΔG for the overall reaction of Eq. (1) is given by

$$\Delta {\text{G }} = \Delta {\text{G}}^{\text{o}} + {\text{ RT ln }}\left[ {{\text{A}}^{ - } } \right]\left[ {{\text{H}}^{ + } } \right]/\left[ {\text{AH}} \right]$$
(4)

Which is essentially the Nernst equation upon substitution of ΔGo = −F Eo and ΔG = −F E:

$${\text{E }} = {\text{ E}}^{\text{o}} {-} \, \left( {{\text{RT}}/{\text{F}}} \right){ \ln }\left[ {{\text{A}}^{ - } } \right]\left[ {{\text{H}}^{ + } } \right]/\left[ {\text{AH}} \right]$$
(5)

At equilibrium, ΔG = 0 and [A][H+]/[AH] = Ka. Therefore,

$${\text{E}}^{0} = \, \left( {{\text{RT}}/{\text{F}}} \right){\text{ ln K}}_{{{\text{a}}({\text{AH}})}} = \, - \left( {{\text{RT}}/{\text{ F log e}}} \right){\text{ pK}}_{{{\text{a}}({\text{AH}})}} = \, - 5 9 {\text{ mV pK}}_{{{\text{a}}({\text{AH}})}}$$
(6)

When T = 298.15 K. Considering that E0 = E 0PyrH +/H(Pt)Pyr−E 0H +/H(Pt), we obtain:

$${\text{E}}^{\text{o}}_{\text{AH}} /_{{{\text{H}}\left( {\text{Pt}} \right){\text{A}} - }} = {\text{ E}}^{\text{o}}_{{{\text{H}} + }} /_{{{\text{H}}({\text{Pt}})}} - {\text{ 59 mV pKa}}_{( {{\text{AH}}})}$$
(7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, K., Askerka, M., Zeitler, E.L. et al. Electrochemical Reduction of Aqueous Imidazolium on Pt(111) by Proton Coupled Electron Transfer. Top Catal 58, 23–29 (2015). https://doi.org/10.1007/s11244-014-0340-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0340-2

Keywords

Navigation