Skip to main content
Log in

Adsorption and Catalytic Activation of the Molecular Oxygen on the Metal Supported h-BN

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Adsorption and catalytic activation of the molecular oxygen on the hexagonal boron nitride (h-BN) monolayer supported on Ni(111) and Cu(111) surfaces have been studied theoretically using density functional theory. It is demonstrated that an inert h-BN monolayer can be functionalized and become catalytically active on the transition metal support as a result of mixing of the metal d and h-BN π bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haruta M (2005) Nature 437:1098–1099

    Article  CAS  Google Scholar 

  2. Davis SE, Ide MS, Davis RJ (2013) Green Chem 15:17–45

    Article  CAS  Google Scholar 

  3. Heiz U, Landman U (eds) (2007) Nanocatalysis. Springer, Berlin

    Google Scholar 

  4. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  5. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  6. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Nature 454:981–984

    Article  CAS  Google Scholar 

  7. Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Nature 437:1132–1135

    Article  CAS  Google Scholar 

  8. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374–9375

    Article  CAS  Google Scholar 

  9. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings G (2002) Chem. Commun. 18:2058–2059

    Article  Google Scholar 

  10. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335

    Article  CAS  Google Scholar 

  11. Lyalin A, Taketsugu T (2009) J Phys Chem C 113:12930–12934

    Article  CAS  Google Scholar 

  12. Lyalin A, Taketsugu T (2010) J Phys Chem Lett 1:1752–1757

    Article  CAS  Google Scholar 

  13. Lyalin A, Nakayama A, Uosaki K, Taketsugu T (2013) Phys Chem Chem Phys 15:2809–2820

    Article  CAS  Google Scholar 

  14. Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D (2010) Nano Lett 10:5049–5055

    Article  CAS  Google Scholar 

  15. Azevedo S, Kaschny JR, de Castilho CM, de Brito Mota F (2009) Eur Phys J B 67:507–512

    Article  CAS  Google Scholar 

  16. Gao M, Lyalin A, Taketsugu T (2012) J Phys Chem C 116:9054–9062

    Article  CAS  Google Scholar 

  17. Gao M, Lyalin A, Taketsugu T (2013) Int J Quantum Chem 113:443–452

    Article  CAS  Google Scholar 

  18. Gao M, Lyalin A, Taketsugu T (2011) Catalysts 1:18–39

    Article  CAS  Google Scholar 

  19. Gao M, Lyalin A, Taketsugu T (2013) J Chem Phys 138:034701

    Article  Google Scholar 

  20. Wiberg N, Holleman AF, Wiberg E (eds.) (2001) Inorganic chemistry. Academic Press, San Diego, 2001

  21. Häkkinen H, Landman U (2001) J Am Chem Soc 123:9704–9705

    Article  Google Scholar 

  22. Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) J Am Chem Soc 125:10437–10445

    Article  CAS  Google Scholar 

  23. Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42:1297–1300

    Article  Google Scholar 

  24. Yoon B, Häkkinen H, Landman U (2003) J Phys Chem A 107:4066–4071

    Article  CAS  Google Scholar 

  25. Coquet R, Howard KL, Willock DJ (2008) Chem Soc Rev 37:2046–2076

    Article  CAS  Google Scholar 

  26. Ding X, Li Z, Yang J, Hou JG, Zhu Q (2004) J Chem Phys 120:9594–9600

    Article  CAS  Google Scholar 

  27. Fernández E, Ordejón P, Balbás LC (2005) Chem Phys Lett 408:252–257

    Article  Google Scholar 

  28. Gómez Díaz J, Ding Y, Koitz R, Seitsonen AP, Iannuzzi M, Hutter J (2013) Theor Chem Acc 132:1350

    Article  Google Scholar 

  29. Lin Y, Connell JW (2012) Nanoscale 4:6908–6939

    Article  CAS  Google Scholar 

  30. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Katsnelson MI, Eaves L, Morozov SV, Mayorov AS, Peres NMR, Castro Neto AH, Leist J, Geim AK, Ponomarenko LA, Novoselov KS (2012) Nano Lett 12:1707–1710

    Article  CAS  Google Scholar 

  31. Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C (1995) Phys Rev B 51:4606–4613

    Article  CAS  Google Scholar 

  32. Rokuta E, Hasegawa Y, Suzuki K, Gamou Y, Oshima C, Nagashima A (1997) Phys Rev Lett 79:4609–4612

    Article  CAS  Google Scholar 

  33. Preobrajenski AB, Vinogradov AS, Mårtensson N (2005) Surf Sci 582:21–30

    Article  CAS  Google Scholar 

  34. Preobrajenski AB, Vinogradov AS, Mårtensson N (2004) Phys Rev B 70:165404

    Article  Google Scholar 

  35. Preobrajenski AB, Krasnikov SA, Vinogradov AS, Ng ML, Käämbre T, Cafolla AA, Mårtensson N (2008) Phys Rev B 77:085421

    Article  Google Scholar 

  36. Laskowski R, Gallauner T, Blaha P, Schwarz K (2009) J Phys Condens Matter 21:104210

    Article  CAS  Google Scholar 

  37. Laskowski R, Blaha P, Schwarz K (2008) Phys Rev B 78:045409/1-10

    Article  Google Scholar 

  38. Grad GB, Blaha P, Schwarz K, Auwärter W, Greber T (2003) Phys Rev B 68:085404

    Article  Google Scholar 

  39. Huda MN, Kleinman L (2006) Phys Rev B 74:075418

    Article  Google Scholar 

  40. Brugger T, Günther S, Wang B, Dil JH, Bocquet M-L, Osterwalder J, Wintterlin J, Greber T (2009) Phys Rev B 79:045407

    Article  Google Scholar 

  41. Shimoyama I, Baba Y, Sekiguchi T, Nath K (2009) J Electron Spectrosc Relat Phenom 175:6–13

    Article  CAS  Google Scholar 

  42. Zhou Y, Zu X, Gao F (2011) Solid State Commun 151:883–886

    Article  CAS  Google Scholar 

  43. Wu Z, Cohen RE (2006) Phys Rev B 73:235116/1-6

    Google Scholar 

  44. Tran F, Laskowski R, Blaha P, Schwarz K (2007) Phys. Rev. B 75:115131

    Article  Google Scholar 

  45. Laskowski R, Blaha P (2010) Phys. Rev. B 81:075418

    Article  Google Scholar 

  46. Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Phys. Stat. Sol. (b) 215:809–817

    Article  CAS  Google Scholar 

  47. Junquera J, Paz O, Sánchez-Portal D, Artacho E (2001) Phys Rev B 64:235111/1-9

    Article  Google Scholar 

  48. Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  49. Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425–1428

    Article  CAS  Google Scholar 

  50. Sánchez-Portal D, Ordejón P, Artacho E, Soler JM (1997) Int J Quantum Chem 65:453–461

    Article  Google Scholar 

  51. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  52. Sánchez-Portal D, Ordejón P, Canadell E (2004) Struct Bond 113:103–170

    Article  Google Scholar 

  53. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  54. Yoo CS, Akella J, Cynn H, Nicol M (1997) Phys Rev. B 56:140–146

    Article  CAS  Google Scholar 

  55. Wyckoff RWG (1963) Crystal structures, vol 1. Wiley, New York

    Google Scholar 

  56. Straumanis ME, Yu LS (1969) Acta Crystallogr 25A:676–682

    Article  Google Scholar 

  57. Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  58. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  59. Lyalin A, Taketsugu T (2010) J Phys Chem C 114:2484–2493

    Article  CAS  Google Scholar 

  60. Lyalin A, Taketsugu T (2011) Faraday Discuss 152:185–201

    Article  CAS  Google Scholar 

  61. Lyalin A, Solov’yov IA, Solov’yov AV, Greiner W (2003) Phys Rev A 67:063203

    Article  Google Scholar 

  62. Lyalin A, Solov’yov IA, Solov’yov AV, Greiner W (2007) Phys Rev A 75:053201

    Article  Google Scholar 

  63. Lyalin A, Solov’yov AV, Greiner W (2006) Phys Rev A 74:043201

    Article  Google Scholar 

  64. Connerade JP, Lyalin AG, Semaoune R, Semenov SK, Solov’yov AV (2011) J Phys B Mol Opt Phys 34:2505–2511

    Article  Google Scholar 

  65. Semenikhina VV, Lyalin A, Solov’yov AV, Greiner W (2008) JETP 106:678–689

    Article  CAS  Google Scholar 

  66. Che JG, Cheng H-P (2005) Phys Rev B 72:115436

    Article  Google Scholar 

  67. Rusz J, Preobrajenski AB, Ng ML, Vinogradov NA, Mårtensson N, Wessely O, Sanyal B, Eriksson O (2010) Phys Rev B 81:073402

    Article  Google Scholar 

  68. Oshima C, Itoh A, Rokuta E, Tanaka T, Yamashita K, Sakurai T (2000) Solid State Commun 116:37–40

    Article  CAS  Google Scholar 

  69. Zhang Y, Yang W (1998) Phys Rev Lett 80:890

    Article  CAS  Google Scholar 

  70. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  71. Joshi S, Ecija D, Koitz R, Iannuzzi M, Seitsonen AP, Hutter J, Sachdev H, Vijayaraghavan S, Bischoff F, Seufert K, Barth JV, Auwärter W (2012) Nano Lett 12:5821–5828

    Article  CAS  Google Scholar 

  72. Oshima C, Nagashima A (1997) J Phys Condens Matter 9:1–20

    Article  CAS  Google Scholar 

  73. Muntwiler M, Auwärter W, Baumberger F, Hoesch M, Greber T, Osterwalder J (2001) Surf Sci 472:125–132

    Article  CAS  Google Scholar 

  74. Solozhenko V, Lazarenko A, Petitet J-P, Kanaev A (2001) J Phys Chem Solids 62:1331–1334

    Article  CAS  Google Scholar 

  75. Mittendorfer F, Eichler A, Hafner J (1999) Surf Sci 433–435:756–760

    Article  Google Scholar 

  76. Yeh C-H, Ho J–J (2012) ChemPhysChem 13:3194–3203

    Article  CAS  Google Scholar 

  77. Xu Y, Mavrikakis M (2001) Surf Sci 494:131–144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Elements Science and Technology Project of Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) on “Nano-hybridized Precious metal-free Catalysts for Chemical Energy Conversion”. A part of this work was performed under a management of “Elements Strategy Initiative for Catalysts & Batteries (ESICB)” supported by MEXT program “Elements Strategy Initiative to Form Core Research Center” (since 2012). The computations were partly performed using the computer facilities of ESCIB, Kyoto and the Research Center for Computational Science, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrey Lyalin or Tetsuya Taketsugu.

Additional information

Andrey Lyalin—On leave from V. A. Fock Institute of Physics, St Petersburg State University, 198504 St Petersburg, Petrodvorez, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyalin, A., Nakayama, A., Uosaki, K. et al. Adsorption and Catalytic Activation of the Molecular Oxygen on the Metal Supported h-BN. Top Catal 57, 1032–1041 (2014). https://doi.org/10.1007/s11244-014-0267-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0267-7

Keywords

Navigation