Skip to main content
Log in

Fischer–Tropsch Synthesis: Oxidation of a Fraction of Cobalt Crystallites in Research Catalysts at the Onset of FT at Partial Pressures Mimicking 50 % CO Conversion

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Freshly H2-reduced catalyst samples and FTS catalyst samples (i.e., freshly reduced and immediately exposed to the onset of FTS conditions corresponding to 50 % CO conversion) were prepared. Each sample was coated in situ using molten polywax and solidified so that an air-protected sample was obtained, which was stored in inert gas. XAS was utilized to investigate the oxidation state of cobalt. A fraction of cobalt crystallites in the freshly reduced research catalysts having lower-than-commercial loading and smaller crystallites undergoes a degree of oxidation to CoO at the onset of FTS conditions simulating 50 % CO conversion (i.e., the H2O partial pressure is high enough to induce some oxidation). Therefore, by decreasing Co content with the aim of improving the dispersion of cobalt and Co efficiency, very small Co crystallites are obtained. Their reoxidation at the onset of FTS is an unintended consequence. Thus, catalysts should be designed to have an optimum narrow cluster size range—small enough to increase Co surface site densities, but large enough to avoid reoxidation, and the stability problems that arise from having unreduced Co in the working catalyst (e.g., a complex coalescence and reduction mechanism).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacobs G, Patterson PM, Zhang YQ, Das TK, Li J, Davis BH (2002) Appl Catal A Gen 233:215

    Article  CAS  Google Scholar 

  2. Tsakoumis NE, Rønning M, Borg Ø, Rytter E, Holmen A (2010) Catal Today 154:162

    Article  CAS  Google Scholar 

  3. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal Gen 233:263

    Article  CAS  Google Scholar 

  4. van Steen E, Claeys M, Dry ME, van de Loosdrecht J, Viljoen EL, Visagie JL (2005) J Phys Chem B 109:3575

    Article  Google Scholar 

  5. Jacobs G, Das TK, Patterson PM, Li J, Sanchez L, Davis BH (2003) Appl Catal A: Gen 247:335

    Article  CAS  Google Scholar 

  6. Sirijaruphan A, Horváth A, Goodwin JG Jr, Oukaci R (2003) Catal Lett 91:89

    Article  CAS  Google Scholar 

  7. Moodley DJ, Saib AM, van de Loosdrecht J, Welker-Nieuwoudt CA, Sigwebela BH, Niemantsverdriet JW (2011) Catal Today 171:192

    Article  CAS  Google Scholar 

  8. Das TK, Jacobs G, Patterson PM, Conner WA, Li J, Davis BH (2003) Fuel 82:805

    Article  CAS  Google Scholar 

  9. Jacobs, G, Ji, Y, Patterson, PM, Das, TK, Luo, M, Davis, BH (2006) AIChE Annual Meeting, San Francisco, CA, Nov. 12–17, 2006

  10. van Steen, E, Claeys, M, Visagie, J, van de Loosdrecht, J, 22nd North American Meeting of The Catalysis Society, Jun. 5–10, 2011, Detroit, MI, USA

  11. Saib AM, Borgna A, van de Loosdrecht J, van Berge PJ, Niemantsverdriet JW (2006) Appl Catal A: Gen 312:12

    Article  CAS  Google Scholar 

  12. van de Loosdrecht J, Balzhinimaev B, Dalmon JA, Niemantsverdriet JW, Tsybulya SV, Saib AM, van Berge PJ, Visagie JL (2007) Catal Today 123:293

    Article  Google Scholar 

  13. Jacobs G, Patterson PM, Das TK, Luo M, Davis BH (2004) Appl Catal A: Gen 270:65

    Article  CAS  Google Scholar 

  14. Storsater S, Borg O, Blekkan E, Holmen A (2005) J Catal 231:405

    Article  Google Scholar 

  15. Saib AM, Moodley DJ, Ciobîcă IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemantsverdriet JW, van de Loosdrecht J (2010) Catal Today 154:271

    Article  CAS  Google Scholar 

  16. Li J, Jacobs G, Das TK, Zhang Y-Q, Davis BH (2002) Appl Catal A: Gen 236:67

    Article  CAS  Google Scholar 

  17. Li J, Zhan X, Zhang Y, Jacobs G, Das TK, Davis BH (2002) Appl Catal A: Gen 228:203

    Article  CAS  Google Scholar 

  18. Fischer, N, Clapham, B, Feltes, TE, van Steen, E, Claeys, M, Syngas Convention 2012, Apr. 1–4, 2012, Cape Town, South Africa

  19. Feltes, T, Fischer, N, Claeys, M, 10th Natural Gas Conversion Symposium, Mar 2–7, 2013, Doha, Qatar

  20. Ma W, Jacobs G, Ji Y, Bhatelia T, Bukur DB, Khalid S, Davis BH (2011) Top Catal 54:757

    Article  CAS  Google Scholar 

  21. Rønning M, Tsakoumis NE, Voronov A, Johnsen RE, Norby P, van Beek W, Borg Ø, Rytter E, Holmen A (2010) Catal Today 155:289

    Article  Google Scholar 

  22. Emmett PH, Brunauer S, Teller E (1938) JACS 60:309

    Article  Google Scholar 

  23. Barrett EP, Joyner LG, Halenda PP (1951) JACS 73:373

    Article  CAS  Google Scholar 

  24. Guczi L, Bazin D, Kovács I, Borkó L, Schay Z, Lynch J, Parent P, Lafon C, Stefler G, Koppány Z, Sajó I (2002) Top Catal 20:129

    Article  CAS  Google Scholar 

  25. Jacobs G, Ji Y, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2007) Appl Catal A: Gen 333:177

    Article  CAS  Google Scholar 

  26. Wang W-J, Chen Y-W (1991) Appl Catal 77:223

    Article  CAS  Google Scholar 

  27. Jacobs G, Chaney JA, Patterson PM, Das TK, Maillot JC, Davis BH (2004) J Synchrotron Rad 11:414

    Article  CAS  Google Scholar 

  28. Zayat M, Levy D (2000) Chem Mat 12:2763

    Article  CAS  Google Scholar 

  29. Bazin D, Kovács I, Guczi L, Parent P, Laffon C, de Groot F, Ducreux O, Lynch J (2000) J Catal 189:456

    Article  CAS  Google Scholar 

  30. Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Appl Catal A: Gen 186:169

    Article  CAS  Google Scholar 

  31. van Berge PJ, van de Loosdrecht J, Barradas S, van der Kraan AM (2000) Catal Today 58:321

    Article  Google Scholar 

  32. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP (2006) JACS 128:3956

    Article  CAS  Google Scholar 

  33. Eggenhuisen TM, Munnik P, Talsma H, de Jongh PE, de Jong KP (2013) J Catal 297(297):306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by a NASA grant (Relating FTS catalyst properties to performance No.NNX11AI75A) and the commonwealth of Kentucky. This research was carried out, in part, at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the US DOE, Division of Materials Science and Chemical Science. We are also grateful to the Fulbright-Thailand Research Fund scholarship program for financial support for Mr. Thani Jermwongratanachai. Argonne’s research was supported in part by the U.S. DOE, Office of Fossil Energy, NETL. The use of the APS was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the DOE and the MRCAT member institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jermwongratanachai, T., Jacobs, G., Shafer, W.D. et al. Fischer–Tropsch Synthesis: Oxidation of a Fraction of Cobalt Crystallites in Research Catalysts at the Onset of FT at Partial Pressures Mimicking 50 % CO Conversion. Top Catal 57, 479–490 (2014). https://doi.org/10.1007/s11244-013-0204-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0204-1

Keywords

Navigation